网易首页
44. The exploration problem (Schulman) - 2
2年前 894观看
加州大学伯克利分校 2017 深度增强学习课程
大学课程 / 社会学
https://www.youtube.com/playlist?list=PLkFD6_40KJIwTmSbCv9OVJB3YaO4sFwkX CS294-112 Deep Reinforcement Learning Sp17 课程主页:http://rll.berkeley.edu/deeprlcourse/
共57集
7.3万人观看
1
Introduction and course overview (Levine, Finn, Schulman) - 1
26:11
2
Introduction and course overview (Levine, Finn, Schulman) - 2
26:14
3
Introduction and course overview (Levine, Finn, Schulman) - 3
26:08
4
Supervised learning and decision making (Levine) - 1
24:06
5
Supervised learning and decision making (Levine) - 2
24:07
6
Supervised learning and decision making (Levine) - 3
24:03
7
Optimal control and planning (Levine) - 1
21:06
8
Optimal control and planning (Levine) - 2
21:13
9
Optimal control and planning (Levine) - 3
21:03
10
Learning dynamical system models from data (Levine) - 1
27:27
11
Learning dynamical system models from data (Levine) - 2
27:35
12
Learning dynamical system models from data (Levine) - 3
27:22
13
Learning policies by imitating optimal controllers (Levine) - 1
23:05
14
Learning policies by imitating optimal controllers (Levine) - 2
23:08
15
Learning policies by imitating optimal controllers (Levine) - 3
22:58
16
RL definitions, value iteration, policy iteration (Schulman) - 1
17:19
17
RL definitions, value iteration, policy iteration (Schulman) - 2
17:22
18
RL definitions, value iteration, policy iteration (Schulman) - 3
17:18
19
Reinforcement learning with policy gradients (Schulman) - 1
21:48
20
Reinforcement learning with policy gradients (Schulman) - 2
21:54
21
Reinforcement learning with policy gradients (Schulman) - 3
21:42
22
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 1
25:50
23
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 2
25:53
24
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 3
25:42
25
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 1
26:47
26
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 2
26:55
27
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 3
26:41
28
Advanced topics in imitation and safety (Finn) - 1
27:53
29
Advanced topics in imitation and safety (Finn) - 2
27:56
30
Advanced topics in imitation and safety (Finn) - 3
27:47
31
Inverse RL: acquiring objectives from demonstration (Finn) - 1
24:47
32
Inverse RL: acquiring objectives from demonstration (Finn) - 2
24:48
33
Inverse RL: acquiring objectives from demonstration (Finn) - 3
24:47
34
Advanced policy gradients: natural gradient and TRPO (Schulman) - 1
28:05
35
Advanced policy gradients: natural gradient and TRPO (Schulman) - 2
28:08
36
Advanced policy gradients: natural gradient and TRPO (Schulman) - 3
28:02
37
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 1
26:55
38
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 2
27:00
39
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 3
26:51
40
Summary of policy gradients and temporal difference methods (Schulman) - 1
24:06
41
Summary of policy gradients and temporal difference methods (Schulman) - 2
24:10
42
Summary of policy gradients and temporal difference methods (Schulman) - 3
23:59
43
The exploration problem (Schulman) - 1
27:18
44
The exploration problem (Schulman) - 2
27:18
45
The exploration problem (Schulman) - 3
27:17
46
Parallel RL algorithms, open problems and challenges in deep reinforcement - 1
26:14
47
Parallel RL algorithms, open problems and challenges in deep reinforcement - 2
26:22
48
Parallel RL algorithms, open problems and challenges in deep reinforcement - 3
26:11
49
Transfer in Reinforcement Learning (Finn) - 1
28:18
50
Transfer in Reinforcement Learning (Finn) - 2
28:18
51
Transfer in Reinforcement Learning (Finn) - 3
28:16
52
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 1
25:24
53
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 2
25:29
54
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 3
25:17
55
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 1
25:39
56
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 2
25:40
57
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 3
25:33
相关视频
第74/74集 · 09:34
中国美术欣赏06(六) - 3
大学课程
2022年10月27日
2450观看
02:48
少儿美术主观线描
轻知识
2023年8月8日
1825观看
10:35
如何鉴赏美术作品 - 1
轻知识
2022年9月29日
3.2万观看
第3/37集 · 07:22
美术设计任务 - 1
大学课程
2022年11月1日
2207观看
02:47
第4集 导演美术上的小心思
轻知识
1年前
904观看
12:00
中国美术史第十节-元代美术 - 3
轻知识
2022年9月28日
1755观看
第7/28集 · 09:47
美术《方寸玲记—藏书印》
大学课程
2022年9月29日
1193观看
00:46
【艺考第一天!直击2019中国传媒大学“新”艺考 直播回顾】美术考试结束出场画面
轻知识
2022年11月5日
1404观看
01:21
闺蜜来了不想走!94㎡,色彩丰富,为美术爱好者的空间扭转
轻知识
1年前
750观看
02:58
音乐美术体育对学生有什么用
轻知识
1年前
681观看
第5/17集 · 12:38
艺术美之美术篇(上) - 2
大学课程
2022年9月6日
5649观看
01:42
意大利导演点赞《哪吒2》 :情感表达细腻 特效制作美术设计令人惊叹
轻知识
6月前
1403观看
00:20
没有点美术细胞,还申诉不回来了
轻知识
1年前
1976观看
13:32
数码绘画的文法14 - 1
纪录片
2022年11月2日
1123观看
第195/213集 · 08:36
【小学美术】第五章 003.经典战例-真题
大学课程
2022年5月24日
1257观看
05:53
戏剧影视美术设计 张玲 - 3
轻知识
2022年10月29日
774观看