网易首页
28. Advanced topics in imitation and safety (Finn) - 1
2023年9月23日 1480观看
加州大学伯克利分校 2017 深度增强学习课程
大学课程 / 社会学
https://www.youtube.com/playlist?list=PLkFD6_40KJIwTmSbCv9OVJB3YaO4sFwkX CS294-112 Deep Reinforcement Learning Sp17 课程主页:http://rll.berkeley.edu/deeprlcourse/
共57集
7.3万人观看
1
Introduction and course overview (Levine, Finn, Schulman) - 1
26:11
2
Introduction and course overview (Levine, Finn, Schulman) - 2
26:14
3
Introduction and course overview (Levine, Finn, Schulman) - 3
26:08
4
Supervised learning and decision making (Levine) - 1
24:06
5
Supervised learning and decision making (Levine) - 2
24:07
6
Supervised learning and decision making (Levine) - 3
24:03
7
Optimal control and planning (Levine) - 1
21:06
8
Optimal control and planning (Levine) - 2
21:13
9
Optimal control and planning (Levine) - 3
21:03
10
Learning dynamical system models from data (Levine) - 1
27:27
11
Learning dynamical system models from data (Levine) - 2
27:35
12
Learning dynamical system models from data (Levine) - 3
27:22
13
Learning policies by imitating optimal controllers (Levine) - 1
23:05
14
Learning policies by imitating optimal controllers (Levine) - 2
23:08
15
Learning policies by imitating optimal controllers (Levine) - 3
22:58
16
RL definitions, value iteration, policy iteration (Schulman) - 1
17:19
17
RL definitions, value iteration, policy iteration (Schulman) - 2
17:22
18
RL definitions, value iteration, policy iteration (Schulman) - 3
17:18
19
Reinforcement learning with policy gradients (Schulman) - 1
21:48
20
Reinforcement learning with policy gradients (Schulman) - 2
21:54
21
Reinforcement learning with policy gradients (Schulman) - 3
21:42
22
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 1
25:50
23
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 2
25:53
24
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 3
25:42
25
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 1
26:47
26
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 2
26:55
27
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 3
26:41
28
Advanced topics in imitation and safety (Finn) - 1
27:53
29
Advanced topics in imitation and safety (Finn) - 2
27:56
30
Advanced topics in imitation and safety (Finn) - 3
27:47
31
Inverse RL: acquiring objectives from demonstration (Finn) - 1
24:47
32
Inverse RL: acquiring objectives from demonstration (Finn) - 2
24:48
33
Inverse RL: acquiring objectives from demonstration (Finn) - 3
24:47
34
Advanced policy gradients: natural gradient and TRPO (Schulman) - 1
28:05
35
Advanced policy gradients: natural gradient and TRPO (Schulman) - 2
28:08
36
Advanced policy gradients: natural gradient and TRPO (Schulman) - 3
28:02
37
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 1
26:55
38
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 2
27:00
39
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 3
26:51
40
Summary of policy gradients and temporal difference methods (Schulman) - 1
24:06
41
Summary of policy gradients and temporal difference methods (Schulman) - 2
24:10
42
Summary of policy gradients and temporal difference methods (Schulman) - 3
23:59
43
The exploration problem (Schulman) - 1
27:18
44
The exploration problem (Schulman) - 2
27:18
45
The exploration problem (Schulman) - 3
27:17
46
Parallel RL algorithms, open problems and challenges in deep reinforcement - 1
26:14
47
Parallel RL algorithms, open problems and challenges in deep reinforcement - 2
26:22
48
Parallel RL algorithms, open problems and challenges in deep reinforcement - 3
26:11
49
Transfer in Reinforcement Learning (Finn) - 1
28:18
50
Transfer in Reinforcement Learning (Finn) - 2
28:18
51
Transfer in Reinforcement Learning (Finn) - 3
28:16
52
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 1
25:24
53
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 2
25:29
54
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 3
25:17
55
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 1
25:39
56
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 2
25:40
57
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 3
25:33
相关视频
08:04
这部电影展现一个时代最真实的中国,真实到让人误以为是纪录片
轻知识
2023年9月19日
1.7万观看
04:08
第4集 严肃的高水准电影
轻知识
1年前
6955观看
01:30
奥斯卡动画短片提名作品《兽性》,根据真人真事改编而成!
轻知识
2023年5月21日
3.1万观看
32:36
侏罗纪编年史:电影+剧集+动态漫+演出+短片+小说+漫画
轻知识
4月前
2620观看
05:31
庆幸!我二十来岁看完了这几部纪录片
轻知识
2022年8月12日
19.6万观看
06:08
豆瓣平均9分却没人看,这5部神级纪录片我必须强烈推荐!
轻知识
2022年5月1日
20.8万观看
06:12
【盘点】看完后能改变你人生的纪录片TOP10 提升自我 改变人生轨迹
轻知识
2021年4月12日
73.2万观看
02:53
拒绝摆烂!看完会“搞钱上瘾”的8部纪录片
轻知识
2022年11月28日
20.2万观看
15:28
其他电影教你成功,它却教你如何失败,这片无论如何都要看一次!
轻知识
2021年11月5日
11.4万观看
14:22
【纪录片】中国商人(瑞往祥来) - 3
2022年10月25日
4035观看
01:58
十部超好看的科幻电影推荐。你看过几部?
轻知识
2021年11月26日
4.6万观看
11:02
真人真事!没想到如此主旋律的电影竟是印度拍的,可惜拍的不够深!
轻知识
2021年10月15日
3.4万观看
19:32
豆瓣9分,一部称得上“罕见”的励志电影,值得珍藏一生《心灵捕手》
轻知识
2021年11月11日
18.7万观看
04:59
看完这些纪录片和书,你将自律成瘾!自我提升类纪录片TOP10
轻知识
2021年12月21日
50.3万观看
14:51
【纪录片】苏园六纪(1999)【6集全】(岁月回章) - 1
2022年10月31日
2702观看
17:53
【纪录片】广阔的天地-1969(1) - 3
纪录片
2022年11月9日
8743观看