网易首页
23. Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 2
2023年9月23日 1128观看
加州大学伯克利分校 2017 深度增强学习课程
大学课程 / 社会学
https://www.youtube.com/playlist?list=PLkFD6_40KJIwTmSbCv9OVJB3YaO4sFwkX CS294-112 Deep Reinforcement Learning Sp17 课程主页:http://rll.berkeley.edu/deeprlcourse/
共57集
7.3万人观看
1
Introduction and course overview (Levine, Finn, Schulman) - 1
26:11
2
Introduction and course overview (Levine, Finn, Schulman) - 2
26:14
3
Introduction and course overview (Levine, Finn, Schulman) - 3
26:08
4
Supervised learning and decision making (Levine) - 1
24:06
5
Supervised learning and decision making (Levine) - 2
24:07
6
Supervised learning and decision making (Levine) - 3
24:03
7
Optimal control and planning (Levine) - 1
21:06
8
Optimal control and planning (Levine) - 2
21:13
9
Optimal control and planning (Levine) - 3
21:03
10
Learning dynamical system models from data (Levine) - 1
27:27
11
Learning dynamical system models from data (Levine) - 2
27:35
12
Learning dynamical system models from data (Levine) - 3
27:22
13
Learning policies by imitating optimal controllers (Levine) - 1
23:05
14
Learning policies by imitating optimal controllers (Levine) - 2
23:08
15
Learning policies by imitating optimal controllers (Levine) - 3
22:58
16
RL definitions, value iteration, policy iteration (Schulman) - 1
17:19
17
RL definitions, value iteration, policy iteration (Schulman) - 2
17:22
18
RL definitions, value iteration, policy iteration (Schulman) - 3
17:18
19
Reinforcement learning with policy gradients (Schulman) - 1
21:48
20
Reinforcement learning with policy gradients (Schulman) - 2
21:54
21
Reinforcement learning with policy gradients (Schulman) - 3
21:42
22
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 1
25:50
23
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 2
25:53
24
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 3
25:42
25
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 1
26:47
26
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 2
26:55
27
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 3
26:41
28
Advanced topics in imitation and safety (Finn) - 1
27:53
29
Advanced topics in imitation and safety (Finn) - 2
27:56
30
Advanced topics in imitation and safety (Finn) - 3
27:47
31
Inverse RL: acquiring objectives from demonstration (Finn) - 1
24:47
32
Inverse RL: acquiring objectives from demonstration (Finn) - 2
24:48
33
Inverse RL: acquiring objectives from demonstration (Finn) - 3
24:47
34
Advanced policy gradients: natural gradient and TRPO (Schulman) - 1
28:05
35
Advanced policy gradients: natural gradient and TRPO (Schulman) - 2
28:08
36
Advanced policy gradients: natural gradient and TRPO (Schulman) - 3
28:02
37
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 1
26:55
38
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 2
27:00
39
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 3
26:51
40
Summary of policy gradients and temporal difference methods (Schulman) - 1
24:06
41
Summary of policy gradients and temporal difference methods (Schulman) - 2
24:10
42
Summary of policy gradients and temporal difference methods (Schulman) - 3
23:59
43
The exploration problem (Schulman) - 1
27:18
44
The exploration problem (Schulman) - 2
27:18
45
The exploration problem (Schulman) - 3
27:17
46
Parallel RL algorithms, open problems and challenges in deep reinforcement - 1
26:14
47
Parallel RL algorithms, open problems and challenges in deep reinforcement - 2
26:22
48
Parallel RL algorithms, open problems and challenges in deep reinforcement - 3
26:11
49
Transfer in Reinforcement Learning (Finn) - 1
28:18
50
Transfer in Reinforcement Learning (Finn) - 2
28:18
51
Transfer in Reinforcement Learning (Finn) - 3
28:16
52
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 1
25:24
53
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 2
25:29
54
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 3
25:17
55
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 1
25:39
56
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 2
25:40
57
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 3
25:33
相关视频
01:37
养蟹爪兰,哪种土壤好? #蟹爪兰
轻知识
7月前
735观看
01:17
初中物理竞赛题:多油的菜汤不易冷却,为何?
轻知识
2年前
974观看
09:44
意群、调群与停顿 - 3
2022年10月25日
2505观看
00:59
历史上最养眼的”十大楷书“第一名连王羲之都佩服
轻知识
2023年10月26日
959观看
20:30
Unit 06 应用拓展 - 1
轻知识
2022年11月5日
887观看
01:34
痛风患者多喝水对肾脏影响
轻知识
6月前
1502观看
01:02
因为一个片段看了整部电影!《勇敢者游戏2》
轻知识
1年前
1512观看
05:33
程序员节去逛京东总部,在京东上班福利竟然这么好?!
轻知识
1年前
1599观看
第18/24集 · 06:42
模块三 3.常量表达式与类型转换方法
大学课程
2022年9月22日
690观看
16:47
高清二战:重大事件——德累斯顿大轰炸.Greatest.Events.of.WWII.S01E08 - 3
纪录片
2022年10月25日
1000观看
18:27
_2浮力(下),力和机械(上) Nov 11 (wmr) - 2
2022年11月5日
1140观看
03:22
灵神号是如何用重力来研究一颗小行星的?
轻知识
1年前
1166观看
30:02
第四届CCTV电视舞蹈大赛.Part.03(ED2000.COM) - 3
2022年11月9日
1033观看
25:38
眼见不一定为真!杀人犯被提取记忆,真相接连反转?《记忆提取》
轻知识
6月前
2855观看
14:46
霍金的天才实验室【全6集】(P2) - 1
纪录片
2022年11月3日
1165观看
23:59
消防周练习 - 2
轻知识
2022年10月27日
743观看