网易首页
18. RL definitions, value iteration, policy iteration (Schulman) - 3
2023年9月23日 517观看
加州大学伯克利分校 2017 深度增强学习课程
大学课程 / 社会学
https://www.youtube.com/playlist?list=PLkFD6_40KJIwTmSbCv9OVJB3YaO4sFwkX CS294-112 Deep Reinforcement Learning Sp17 课程主页:http://rll.berkeley.edu/deeprlcourse/
共57集
7.3万人观看
1
Introduction and course overview (Levine, Finn, Schulman) - 1
26:11
2
Introduction and course overview (Levine, Finn, Schulman) - 2
26:14
3
Introduction and course overview (Levine, Finn, Schulman) - 3
26:08
4
Supervised learning and decision making (Levine) - 1
24:06
5
Supervised learning and decision making (Levine) - 2
24:07
6
Supervised learning and decision making (Levine) - 3
24:03
7
Optimal control and planning (Levine) - 1
21:06
8
Optimal control and planning (Levine) - 2
21:13
9
Optimal control and planning (Levine) - 3
21:03
10
Learning dynamical system models from data (Levine) - 1
27:27
11
Learning dynamical system models from data (Levine) - 2
27:35
12
Learning dynamical system models from data (Levine) - 3
27:22
13
Learning policies by imitating optimal controllers (Levine) - 1
23:05
14
Learning policies by imitating optimal controllers (Levine) - 2
23:08
15
Learning policies by imitating optimal controllers (Levine) - 3
22:58
16
RL definitions, value iteration, policy iteration (Schulman) - 1
17:19
17
RL definitions, value iteration, policy iteration (Schulman) - 2
17:22
18
RL definitions, value iteration, policy iteration (Schulman) - 3
17:18
19
Reinforcement learning with policy gradients (Schulman) - 1
21:48
20
Reinforcement learning with policy gradients (Schulman) - 2
21:54
21
Reinforcement learning with policy gradients (Schulman) - 3
21:42
22
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 1
25:50
23
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 2
25:53
24
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 3
25:42
25
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 1
26:47
26
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 2
26:55
27
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 3
26:41
28
Advanced topics in imitation and safety (Finn) - 1
27:53
29
Advanced topics in imitation and safety (Finn) - 2
27:56
30
Advanced topics in imitation and safety (Finn) - 3
27:47
31
Inverse RL: acquiring objectives from demonstration (Finn) - 1
24:47
32
Inverse RL: acquiring objectives from demonstration (Finn) - 2
24:48
33
Inverse RL: acquiring objectives from demonstration (Finn) - 3
24:47
34
Advanced policy gradients: natural gradient and TRPO (Schulman) - 1
28:05
35
Advanced policy gradients: natural gradient and TRPO (Schulman) - 2
28:08
36
Advanced policy gradients: natural gradient and TRPO (Schulman) - 3
28:02
37
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 1
26:55
38
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 2
27:00
39
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 3
26:51
40
Summary of policy gradients and temporal difference methods (Schulman) - 1
24:06
41
Summary of policy gradients and temporal difference methods (Schulman) - 2
24:10
42
Summary of policy gradients and temporal difference methods (Schulman) - 3
23:59
43
The exploration problem (Schulman) - 1
27:18
44
The exploration problem (Schulman) - 2
27:18
45
The exploration problem (Schulman) - 3
27:17
46
Parallel RL algorithms, open problems and challenges in deep reinforcement - 1
26:14
47
Parallel RL algorithms, open problems and challenges in deep reinforcement - 2
26:22
48
Parallel RL algorithms, open problems and challenges in deep reinforcement - 3
26:11
49
Transfer in Reinforcement Learning (Finn) - 1
28:18
50
Transfer in Reinforcement Learning (Finn) - 2
28:18
51
Transfer in Reinforcement Learning (Finn) - 3
28:16
52
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 1
25:24
53
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 2
25:29
54
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 3
25:17
55
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 1
25:39
56
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 2
25:40
57
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 3
25:33
相关视频
01:10
【发现春之美】候鸟北归 岭上林都奏响春日交响曲
轻知识
1年前
1492观看
03:20
朗诵家王妃做客中国教育电视台诗乐交响栏目
轻知识
1年前
1292观看
00:14
静听柴可夫斯基的小猫咪
轻知识
8月前
1856观看
00:28
梅林三重奏
轻知识
6月前
752观看
00:34
非常精彩的演出,大小提琴协奏曲
轻知识
9月前
925观看
01:21
萨克斯和小号的交响
轻知识
2月前
839观看
01:57
化学界的“指挥家”—铂,能指挥分子奏响怎样的“交响曲”?
轻知识
12月前
6023观看
00:51
回顾14年浴血奋战,联合军乐团奏响《保卫黄河》等曲目
轻知识
2月前
723观看
01:10
后唢呐博士刘雯雯,维也纳金色大厅演奏《百鸟朝凤》
轻知识
10月前
1485观看
03:17
萨克斯演奏《枉凝眉》红楼梦经典主题曲 优美的旋律 非凡的意境.
轻知识
8月前
1025观看
03:51
萨克斯演奏《女人花》轻柔婉转,深情悠扬
轻知识
11月前
1462观看
02:08
芬兰女声合唱团Tuuletar演唱芬兰民歌耶娃波尔卡
轻知识
5月前
2119观看
01:37
只想亲口听你说喜欢!抒情双人舞《无法抗拒的你》
轻知识
8月前
1190观看
03:17
萨克斯演奏《月亮代表我的心》送给思念的人!
轻知识
9月前
1233观看
00:51
猫猫钢琴家倾情演奏!弹得还怪好听的
轻知识
1年前
1570观看
04:10
萨克斯独奏:经典《相见恨晚》,别样深情
轻知识
1天前
940观看