网易首页
20. Reinforcement learning with policy gradients (Schulman) - 2
2023年9月23日 890观看
加州大学伯克利分校 2017 深度增强学习课程
大学课程 / 社会学
https://www.youtube.com/playlist?list=PLkFD6_40KJIwTmSbCv9OVJB3YaO4sFwkX CS294-112 Deep Reinforcement Learning Sp17 课程主页:http://rll.berkeley.edu/deeprlcourse/
共57集
7.3万人观看
1
Introduction and course overview (Levine, Finn, Schulman) - 1
26:11
2
Introduction and course overview (Levine, Finn, Schulman) - 2
26:14
3
Introduction and course overview (Levine, Finn, Schulman) - 3
26:08
4
Supervised learning and decision making (Levine) - 1
24:06
5
Supervised learning and decision making (Levine) - 2
24:07
6
Supervised learning and decision making (Levine) - 3
24:03
7
Optimal control and planning (Levine) - 1
21:06
8
Optimal control and planning (Levine) - 2
21:13
9
Optimal control and planning (Levine) - 3
21:03
10
Learning dynamical system models from data (Levine) - 1
27:27
11
Learning dynamical system models from data (Levine) - 2
27:35
12
Learning dynamical system models from data (Levine) - 3
27:22
13
Learning policies by imitating optimal controllers (Levine) - 1
23:05
14
Learning policies by imitating optimal controllers (Levine) - 2
23:08
15
Learning policies by imitating optimal controllers (Levine) - 3
22:58
16
RL definitions, value iteration, policy iteration (Schulman) - 1
17:19
17
RL definitions, value iteration, policy iteration (Schulman) - 2
17:22
18
RL definitions, value iteration, policy iteration (Schulman) - 3
17:18
19
Reinforcement learning with policy gradients (Schulman) - 1
21:48
20
Reinforcement learning with policy gradients (Schulman) - 2
21:54
21
Reinforcement learning with policy gradients (Schulman) - 3
21:42
22
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 1
25:50
23
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 2
25:53
24
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 3
25:42
25
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 1
26:47
26
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 2
26:55
27
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 3
26:41
28
Advanced topics in imitation and safety (Finn) - 1
27:53
29
Advanced topics in imitation and safety (Finn) - 2
27:56
30
Advanced topics in imitation and safety (Finn) - 3
27:47
31
Inverse RL: acquiring objectives from demonstration (Finn) - 1
24:47
32
Inverse RL: acquiring objectives from demonstration (Finn) - 2
24:48
33
Inverse RL: acquiring objectives from demonstration (Finn) - 3
24:47
34
Advanced policy gradients: natural gradient and TRPO (Schulman) - 1
28:05
35
Advanced policy gradients: natural gradient and TRPO (Schulman) - 2
28:08
36
Advanced policy gradients: natural gradient and TRPO (Schulman) - 3
28:02
37
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 1
26:55
38
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 2
27:00
39
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 3
26:51
40
Summary of policy gradients and temporal difference methods (Schulman) - 1
24:06
41
Summary of policy gradients and temporal difference methods (Schulman) - 2
24:10
42
Summary of policy gradients and temporal difference methods (Schulman) - 3
23:59
43
The exploration problem (Schulman) - 1
27:18
44
The exploration problem (Schulman) - 2
27:18
45
The exploration problem (Schulman) - 3
27:17
46
Parallel RL algorithms, open problems and challenges in deep reinforcement - 1
26:14
47
Parallel RL algorithms, open problems and challenges in deep reinforcement - 2
26:22
48
Parallel RL algorithms, open problems and challenges in deep reinforcement - 3
26:11
49
Transfer in Reinforcement Learning (Finn) - 1
28:18
50
Transfer in Reinforcement Learning (Finn) - 2
28:18
51
Transfer in Reinforcement Learning (Finn) - 3
28:16
52
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 1
25:24
53
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 2
25:29
54
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 3
25:17
55
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 1
25:39
56
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 2
25:40
57
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 3
25:33
相关视频
07:41
中国近代哲学,东西方思想和文化的差异
轻知识
1年前
3447观看
第14/40集 · 07:35
必须正确对待中国传统文化 - 3
大学课程
2022年9月29日
4665观看
00:26
《某种物质》一部对现代娱乐产业对身体异化的深刻批判之作
轻知识
1年前
995观看
06:54
什么是消费伦理?从消费伦理到消费美学,有哪些转变?
轻知识
1年前
2825观看
03:22
傅佩荣:以后再有人跟你谈文化,你就跟他讲三句话,就够了
轻知识
10月前
1234观看
01:38
学习100丨坚守中华文化立场
轻知识
2年前
2142观看
04:16
交融共生不仅是美学和文化概念,更是华为坚信的合作理念
轻知识
11月前
1132观看
01:14
用宇宙视野来看,中国文化还将如何发展?
轻知识
8月前
907观看
00:39
学文化、学语境、学习俗、学思考方式
轻知识
2年前
1695观看
11:38
拼到最后是文化,文化拼的是哲学!
轻知识
1年前
2316观看
14:19
何刚:人是管理的目标和最终的一切
轻知识
2023年9月12日
3976观看
07:31
瞧不起哲学?我笑了,我这个笑有点诡异
2022年9月29日
5971观看
08:29
马未都劝学:不要觉得读书没用,一个人真正的财富是内心的修养!
轻知识
2023年8月8日
2万观看
第3/17集 · 12:19
如何理解当代哲学热点问题 - 3
大学课程
2022年8月18日
3051观看
第2/14集 · 13:10
对中华民族传统文化思想的再认识 - 2
大学课程
2022年8月18日
1.8万观看
第1/54集 · 09:49
【【语言】南京大学——德语入门:基础语音和会话】1语音绪论 - 1
大学课程
2022年9月29日
2万观看