网易首页
8. Optimal control and planning (Levine) - 2
2023年9月23日 617观看
加州大学伯克利分校 2017 深度增强学习课程
大学课程 / 社会学
https://www.youtube.com/playlist?list=PLkFD6_40KJIwTmSbCv9OVJB3YaO4sFwkX CS294-112 Deep Reinforcement Learning Sp17 课程主页:http://rll.berkeley.edu/deeprlcourse/
共57集
7.3万人观看
1
Introduction and course overview (Levine, Finn, Schulman) - 1
26:11
2
Introduction and course overview (Levine, Finn, Schulman) - 2
26:14
3
Introduction and course overview (Levine, Finn, Schulman) - 3
26:08
4
Supervised learning and decision making (Levine) - 1
24:06
5
Supervised learning and decision making (Levine) - 2
24:07
6
Supervised learning and decision making (Levine) - 3
24:03
7
Optimal control and planning (Levine) - 1
21:06
8
Optimal control and planning (Levine) - 2
21:13
9
Optimal control and planning (Levine) - 3
21:03
10
Learning dynamical system models from data (Levine) - 1
27:27
11
Learning dynamical system models from data (Levine) - 2
27:35
12
Learning dynamical system models from data (Levine) - 3
27:22
13
Learning policies by imitating optimal controllers (Levine) - 1
23:05
14
Learning policies by imitating optimal controllers (Levine) - 2
23:08
15
Learning policies by imitating optimal controllers (Levine) - 3
22:58
16
RL definitions, value iteration, policy iteration (Schulman) - 1
17:19
17
RL definitions, value iteration, policy iteration (Schulman) - 2
17:22
18
RL definitions, value iteration, policy iteration (Schulman) - 3
17:18
19
Reinforcement learning with policy gradients (Schulman) - 1
21:48
20
Reinforcement learning with policy gradients (Schulman) - 2
21:54
21
Reinforcement learning with policy gradients (Schulman) - 3
21:42
22
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 1
25:50
23
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 2
25:53
24
Learning Q-functions: Q-learning, SARSA, and others (Schulman) - 3
25:42
25
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 1
26:47
26
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 2
26:55
27
Advanced Q-learning: replay buffers, target networks, double Q-learning (Sc - 3
26:41
28
Advanced topics in imitation and safety (Finn) - 1
27:53
29
Advanced topics in imitation and safety (Finn) - 2
27:56
30
Advanced topics in imitation and safety (Finn) - 3
27:47
31
Inverse RL: acquiring objectives from demonstration (Finn) - 1
24:47
32
Inverse RL: acquiring objectives from demonstration (Finn) - 2
24:48
33
Inverse RL: acquiring objectives from demonstration (Finn) - 3
24:47
34
Advanced policy gradients: natural gradient and TRPO (Schulman) - 1
28:05
35
Advanced policy gradients: natural gradient and TRPO (Schulman) - 2
28:08
36
Advanced policy gradients: natural gradient and TRPO (Schulman) - 3
28:02
37
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 1
26:55
38
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 2
27:00
39
Policy gradient variance reduction and actor-critic algorithms (Schulman) - 3
26:51
40
Summary of policy gradients and temporal difference methods (Schulman) - 1
24:06
41
Summary of policy gradients and temporal difference methods (Schulman) - 2
24:10
42
Summary of policy gradients and temporal difference methods (Schulman) - 3
23:59
43
The exploration problem (Schulman) - 1
27:18
44
The exploration problem (Schulman) - 2
27:18
45
The exploration problem (Schulman) - 3
27:17
46
Parallel RL algorithms, open problems and challenges in deep reinforcement - 1
26:14
47
Parallel RL algorithms, open problems and challenges in deep reinforcement - 2
26:22
48
Parallel RL algorithms, open problems and challenges in deep reinforcement - 3
26:11
49
Transfer in Reinforcement Learning (Finn) - 1
28:18
50
Transfer in Reinforcement Learning (Finn) - 2
28:18
51
Transfer in Reinforcement Learning (Finn) - 3
28:16
52
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 1
25:24
53
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 2
25:29
54
Neural Architecture Search with Reinforcement Learning: Quoc Le and Barret Z - 3
25:17
55
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 1
25:39
56
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 2
25:40
57
Generalization and Safety in Reinforcement Learning and Control: Aviv Tamar - 3
25:33
相关视频
00:37
和男人相处,掌握这个绝招就可以
轻知识
11月前
711观看
第6/9集 · 11:35
中山大学社会工作中的女性问题 5讲 裴谕新主讲(4) - 1
大学课程
2022年11月2日
2228观看
02:08
看看什么叫好莱坞超级大场面
轻知识
11月前
1768观看
第5/8集 · 10:37
地理环境对中国历史和文化的影响 - 1
大学课程
2022年10月27日
7897观看
01:28
牛人脑洞大开!将耐克鞋子玩出了新花样,打造出的成品太惊艳了
轻知识
11月前
838观看
第26/123集 · 13:12
二阶方程的分类(二) - 2
大学课程
2022年10月31日
1073观看
02:37
鲈鱼别总清蒸了,试试这道糖醋做法,酸甜开胃超好吃,孩子真喜欢
轻知识
1年前
624观看
07:19
陕西话一口气讲完 大秦“嘴炮”张仪的一生 #抖音知识年终大赏
轻知识
9月前
801观看
第5/22集 · 09:59
茶人与茶人精神
大学课程
2022年10月25日
2327观看
25:39
【量子霍尔效应讲座】第六讲 - 2
演讲
2022年11月6日
782观看
01:53
一盘简单的香干炒肉,是四川人吃不腻的味道,简单鲜美还好吃下饭
轻知识
3月前
1387观看
00:09
阅兵日执勤的军人纹丝不动,阿姨们不停地帮忙扇风降温
轻知识
2月前
1211观看
03:24
第4集 大西洋斑点海豚的声呐系统
轻知识
7月前
1065观看
10:02
《极寒之城》女特工大战柏林,与各国特工展开博弈!
轻知识
2023年8月23日
1084观看
01:40
NASA毅力号火星车,壮观的火星全景
轻知识
7月前
997观看
03:21
二级文明的标配,能包裹太阳发电的戴森球,可能已经出现了?
轻知识
1年前
1460观看