前言
痛觉敏化指一定刺激引起疼痛感受增强的现象。手术的伤害性刺激,术中阿片类药物的使用都可能会引起外周或中枢痛觉敏化,导致患者术后急性疼痛,加剧应激反应,不利于术后康复,并有可能发展为慢性疼痛 [1]。对于麻醉医生而言,预防术后痛觉敏化的产生,以及合理处理痛觉敏化是非常必要的。
术后痛觉敏化的原因
术后痛觉敏化的原因主要分成两大类:伤害性刺激诱导的痛觉敏化(NIH)和阿片类药物诱导的痛觉敏化(OIH)。围术期镇痛不足可引起NIH,而阿片类药物使用不当可引起OIH。
伤害性刺激诱导的痛觉敏化(NIH):NIH是由手术对组织或神经的创伤,或局部体液(如前列腺素等化学物质)引起的。局部损伤和炎症因子的释放可引起外周敏化,而伤害性刺激的持续存在则进一步诱导了中枢敏化。预防性镇痛可以有效减轻NIH[10]。
阿片类药物诱导的痛觉敏化(OIH):阿片类药物是用于控制中度至重度急性和慢性疼痛的中流砥柱,然而矛盾的是,阿片类药物也可激活促痛机制,导致中枢敏化,通常表现为弥漫性疼痛。OIH的发生与高剂量、长疗程以及用药浓度的突然变化有关。阿片类药物引起痛觉敏化的三大主要机制包括中枢谷氨酸能系统的激活(NMDA受体激活),脊髓强啡肽的释放以及下行脊髓易化[4]。多模式镇痛有助于减少OIH的发生。
不同阿片类镇痛药物与痛觉敏化
各种强效阿片类药物均可引起OIH,然而对OIH的报道主要集中于瑞芬太尼[11]。
瑞芬太尼:是最容易引起痛觉敏化的阿片类药物。瑞芬太尼诱导的痛觉敏化不仅与高剂量应用相关,也与停药方式相关。一项研究显示,瑞芬太尼以2.5ng/ml的剂量给药30min后突然撤药时痛觉敏化的风险较高,而每5min减药0.6ng/ml 时则未发现痛觉敏化[12]。瑞芬太尼能迅速且持续地增强NMDA受体的反应,并且瑞芬太尼诱导的痛觉过敏可以通过使用NMDA受体拮抗剂来阻断。临床上已经发现,氯胺酮可以有效减轻瑞芬太尼引起的痛觉敏化[13]。
芬太尼:芬太尼诱导的痛觉敏化呈剂量依赖性。一项研究发现,与低剂量芬太尼(1 μg/kg)相比,高剂量芬太尼 (10 μg/kg) 显著增加了痛觉敏化的风险[14]。
舒芬太尼:在动物研究中发现舒芬太尼可引起痛觉敏化[15],但是在人类的研究中未发现相关报道。
吗啡:吗啡引起的痛觉敏化主要发生在因慢性疼痛长期使用吗啡的患者中[16]。全身和硬膜外使用吗啡在实验中已被证明能激活NMDAR系统,并诱导痛觉过敏,但这主要发生在长期(天-周)使用期间[6]。
痛觉敏化的预防和处理
术后痛觉敏化是患者围术期管理中的一个重大挑战。预防和处理术后痛觉敏化需要多管齐下,包括预防性镇痛、多模式镇痛等。
预防性镇痛
预防性镇痛是指在伤害性刺激发生之前给予镇痛治疗,以预防中枢或者外周痛觉敏化[17]。预防性镇痛可以减少术后急性疼痛的发生,减少对额外镇痛药物的需求并减少术后慢性疼痛[18, 19]。然而需要注意的是,当预防性镇痛的药效退去,而创伤或者炎症引起的伤害性刺激持续存在,痛觉敏化可再次诱发。只有当镇痛管理全面覆盖了伤害性刺激(包括术后持续的炎症反应),预防性镇痛才能给患者最大获益[20]。
多模式镇痛
多模式镇痛的原则包括使用多种策略和药物来管理患者的预期并控制术后疼痛,以减轻围手术期的应激反应,并促进术后早期康复。这些策略包括:患者教育、基于局部麻醉药的技术(局部浸润、周围神经阻滞和神经轴镇痛),以及联合使用作用于疼痛传导通路内不同靶点的镇痛药物,以产生协同效应、提供更优的镇痛效果和生理益处[21-23]。多模式镇痛可以减少阿片类药物的使用,从而有效减少OIH在内的阿片类药物不良反应的发生;而另一些药物(氯胺酮)则可以对OIH起到保护作用[24, 25]。
抑制痛觉敏化的药物
氯胺酮:氯胺酮是NMDA受体拮抗剂,调节μ受体介导的信号通路,加强阿片类药物的镇痛作用,并且抑制阿片类药物诱导的痛觉敏化[26]。氯胺酮可以用于减轻瑞芬太尼引起的痛觉敏化[13]。
加巴喷丁:加巴喷丁是一种GABA类似物,但并不与GABA受体结合。相反,它与电压门控钙通道的α2δ亚单位结合,抑制兴奋性神经递质的释放。加巴喷丁可以有效抑制中枢敏化,是神经病理性疼痛的常见用药[27]。加巴喷丁也可以减轻阿片类药物诱导的痛觉敏化[28, 29]。
对乙酰氨基酚:可以同时抑制外周和中枢敏化。其减轻外周敏化的机制是由于抑制了环氧化酶从而抑制了炎症因子的合成;其减轻中枢敏化的机制可能由其代谢产物介导。对乙酰氨基酚在慢性疼痛和术后疼痛中应用广泛[30]。
总结
术后痛觉敏化主要包括了伤害性刺激诱导的痛觉敏化和阿片类药物诱导的痛觉敏化。预防性镇痛、多模式镇痛可以减少术后痛觉敏化的发生,提高患者的舒适度,利于患者康复。
参考文献:
1. Glare P, Aubrey KR, Myles PS. Transition from acute to chronic pain after surgery. Lancet. 2019;393(10180):1537-46.
2. Gan TJ. Poorly controlled postoperative pain: prevalence, consequences, and prevention. J Pain Res. 2017;10:2287-98.
3. Ma JF, Huang ZL, Li J, Hu SJ, Lian QQ. Cohort study of remifentanil-induced hyperalgesia in postoperative patients. Nat Med J China. 2011;91(14):977-9.
4. Wilder-Smith Oliver HG, Arendt-Nielsen L. Postoperative Hyperalgesia: Its Clinical Importance and Relevance. Anesthesiology. 2006;104(3):601-7.
5. Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10(1):77-88.
6. Weinbroum AA. Postoperative hyperalgesia-A clinically applicable narrative review. Pharmacological research. 2017;120:188-205.
7. Steeds CE. The anatomy and physiology of pain. Surgery (United Kingdom). 2016;34(2):55-9.
8. Mano H, Seymour B. Pain: A Distributed Brain Information Network? PloS Biol. 2015;13(1).
9. McClain BC. Primary and secondary hyperalgesia. The Essence of Analgesia and Analgesics: Cambridge University Press; 2010. p. 17-22.
10. Kawamata M, Watanabe H, Nishikawa K, Takahashi T, Kozuka Y, Kawamata T, et al. Different mechanisms of development and maintenance of experimental incision-induced hyperalgesia in human skin. Anesthesiology. 2002;97(3):550-9.
11. Fletcher D, Martinez V. Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis. Br J Anaesth. 2014;112(6):991-1004.
12. Comelon M, Raeder J, Stubhaug A, Nielsen CS, Draegni T, Lenz H. Gradual withdrawal of remifentanil infusion may prevent opioid-induced hyperalgesia. Br J Anaesth. 2016;116(4):524-30.
13. Choi E, Lee H, Park HS, Lee GY, Kim YJ, Baik HJ. Effect of intraoperative infusion of ketamine on remifentanil-induced hyperalgesia. Korean journal of anesthesiology. 2015;68(5):476-80.
14. Mauermann E, Filitz J, Dolder P, Rentsch KM, Bandschapp O, Ruppen W. Does Fentanyl Lead to Opioid-induced Hyperalgesia in Healthy Volunteers?: A Double-blind, Randomized, Crossover Trial. Anesthesiology. 2016;124(2):453-63.
15. Freye E, Levy JV. No hyperalgesia following opioid withdrawal after the oripavine derivative etorphine compared to remifentanil and sufentanil. European journal of anaesthesiology. 2010;27(2):174-80.
16. Iordanov N. Opioid induced hyperalgesia in patient on continous morphine treatment for chronic pain control. Anaesthesiol Intensive Care. 2008;35(3):39-43.
17. Sittl R, Irnich D, Lang PM. Update on preemptive analgesia: Options and limits of preoperative pain therapy. Anaesthesist. 2013;62(10):789-96.
18. Van Backer JT, Jordan MR, Leahy DT, Moore JS, Callas P, Dominick T, et al. Preemptive Analgesia Decreases Pain Following Anorectal Surgery: A Prospective, Randomized, Double-Blinded, Placebo-Controlled Trial. Dis Colon Rectum. 2018;61(7):824-9.
19. Aglio LS, Abd-El-Barr MM, Orhurhu V, Kim GY, Zhou J, Gugino LD, et al. Preemptive analgesia for postoperative pain relief in thoracolumbosacral spine operations: A double-blind, placebo-controlled randomized trial. J Neurosurg Spine. 2018;29(6):647-53.
20. Møiniche S, Kehlet H, Dahl JB. A qualitative and quantitative systematic review of preemptive analgesia for postoperative pain relief: the role of timing of analgesia. Anesthesiology. 2002;96(3):725-41.
21. Yoo JS, Ahn J, Buvanendran A, Singh K. Multimodal analgesia in pain management after spine surgery. J Spine Surg. 2019;5:154-9.
22. Zahid MA, Kumar V, Saddique F, Khan B, Saleh M, Ahmed S. Beyond the incision: exploring acute pain management strategies following cardiac surgeries. Anaesth Pain Intensive Care. 2024;28(2):358-71.
23. Kehlet H, Holte K. Effect of postoperative analgesia on surgical outcome. Br J Anaesth. 2001;87(1):62-72.
24. Goode VM, Morgan B, Muckler VC, Cary MP, Zdeb CE, Zychowicz M. Multimodal Pain Management for Major Joint Replacement Surgery. Orthop Nurs. 2019;38(2):150-6.
25. Barelli R, Morelli Sbarra G, Sbaraglia F, Zappia L, Rossi M. Prevention of post-operative hyperalgesia in a heroin-addicted patient on methadone maintenance. J Clin Pharm Ther. 2019;44(3):397-9.
26. Gupta A, Devi LA, Gomes I. Potentiation of μ-opioid receptor-mediated signaling by ketamine. J Neurochem. 2011;119(2):294-302.
27. Iannetti GD, Zambreanu L, Wise RG, Buchanan TJ, Huggins JP, Smart TS, et al. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A. 2005;102(50):18195-200.
28. Dierking G, Duedahl TH, Rasmussen ML, Fomsgaard JS, Møiniche S, Rømsing J, et al. Effects of gabapentin on postoperative morphine consumption and pain after abdominal hysterectomy: A randomized, double-blind trial. Acta anaesthesiologica Scandinavica. 2004;48(3):322-7.
29. Van Elstraete AC, Sitbon P, Mazoit JX, Benhamou D. Gabapentin prevents delayed and long-lasting hyperalgesia induced by fentanyl in rats. Anesthesiology. 2008;108(3):484-94.
30. Hoshijima H, Hunt M, Nagasaka H, Yaksh T. Systematic review of systemic and neuraxial effects of acetaminophen in preclinical models of nociceptive processing. J Pain Res. 2021;14:3521-52.
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.