1成果简介
氧还原反应(ORR)是锌空气电池等可再生能源技术的基石,但其缓慢的动力学特性及对贵金属催化剂的依赖仍是关键瓶颈。本文,中国科学院福建物质结构研究所韩丽丽 研究员、温州大学钱金杰 副教授、天津大学刘辉 英才教授等在《ADVANCED MATERALS》期刊发表名为“Covalent Dangling of
Poly-Indium-Phthalocyanine Over Carbon Nanopits as Superior Oxygen Reduction Catalyst for Flexible Zn-Air Battery”的论文,研究报道了一种创新催化剂——通过将聚铟酞菁共价悬挂于碳纳米管缺陷区构建的碳纳米管(InPPc/v-CNTs)。
该结构诱导轴向In-C配位,打破平面In-N4中心的对称电子分布,强化了电子金属-载体间相互作用。理论计算表明,这种扭曲的电子环境既增强了O2吸附/解离动力学,又降低了*OH脱附能垒,从而协同提升了ORR动力学。得益于定制电子结构与优化的金属-载体配置,InPPc/v-CNTs展现出卓越的氧还原反应活性与稳定性:半波电位达0.90V vs RHE,动力学电流密度达42.9mA cm⁻²(远超Pt/C基准值10倍以上)。此外,在水系锌空气电池中,该材料展现出270 mW cm⁻²的卓越功率密度,并在5 mA cm⁻²电流密度下保持高达865小时的放电稳定性。本研究通过将缺陷工程、电子不对称性与大分子稳定化技术融合为统一框架,突破了传统催化剂设计局限,为金属酞菁类氧还原反应催化剂开创了全新范式。
2图文导读
![]()
图1.a) Schematic synthesis of InPPc/v-CNTs. b) HRTEM images of CNTs and v-CNTs. c) TEM and d) HRTEM images of InPPc/v-CNTs. e,f) AC-HAADF-STEM images of InPPc/v-CNTs, the isolated In sites are highlighted by yellow circles, and inset in f) is the 3D atom-overlapping Gaussian-function fitting map of the isolated In site marked with a pink circle. g) HAADF image and elemental mappings of InPPc/v-CNTs.
![]()
图2、(a) XRD patterns of InPPc, CNTs, v-CNTs, and InPPc/v-CNTs. (b) Raman spectra of CNTs, v-CNTs, and InPPc/v-CNTs. High-resolution (c) C 1s, (d) N 1s, and (e) In 3d XPS of InPPc, InPPc/CNTs, and InPPc/v-CNTs. (f) XANES, (g) Fourier-transformed EXAFS and (h) WT-EXAFS spectra of InPPc, InPPc/CNTs, InPPc/v-CNTs, and In foil at the In K-edge.
![]()
图3、a) LSVs and b) Tafel plots of InPPC/v-CNTs, InPPc/CNTs, InPPc, v-CNTs, CNTs, and Pt/C at 1600 rpm in O2-saturated 0.1 M KOH electrolyte. c) Comparison of E1/2 and Tafel slopes between InPPc/v-CNTs and recently reported ORR catalysts. d) LSV polarization curves at different rotation speeds and corresponding K−L plots of InPPc/v-CNTs. e) Comparison of Jk and MA at 0.85 V among InPPC/v-CNTs, InPPc/CNTs, and Pt/C. f) Chronoamperometric curves and LSVs of InPPc/v-CNTs initially and after 5, 10, and 15k ADT CV cycles.
![]()
图4、a) Schematic of the home-made aqueous rechargeable ZAB. b) OCV plots, c) discharge polarization and power density curves, d) specific discharge capacities at 10 mA cm2, and e) galvanostatic discharge curves at various current densities of the aqueous ZABs with InPPc/v-CNTs and Pt/C+RuO2 as cathodes, respectively. f) Application demonstration of charging a smartphone using the aqueous ZAB with the InPPc/v-CNTs cathode. g) Discharge–charge cycling at 5 mA cm−2 of the aqueous ZABs with InPPc/v-CNTs and Pt/C+RuO2 as cathodes, respectively. (h) OCV plots and i) discharge–charge cycling at 5 mA cm−2 of the quasi-solid-state rechargeable ZABs, insets show photographs of the quasi-solid-state ZABs in various states: flat (0°), bent (45°), bent (90°), bent (180°), and returned to flat (0°).
![]()
图5、a) Adsorption configurations of *OOH, *O, and *OH intermediates on the InPPc/v-CNTs catalyst model. b) Projected DOS (PDOS) of the In–N4 center in different models. (c) Structural models with differential charge densities upon adsorption of O2 (yellow and cyan isosurfaces represent the electron accumulation and depletion, respectively). d) O2 adsorption energy and Bader charge analysis for InPPc/v-CNTs, InPPc/CNTs, and InPPc. e) ORR Gibbs free energy diagrams at 1.23 V for InPPc/v-CNTs, InPPc/CNTs, and InPPc. f) ORR Gibbs free energy diagrams at 1.23, 0.76, and 0 V for InPPc/v-CNTs.
3小结
综上所述,我们通过将聚铟酞菁(InPPc)共价锚定于纳米坑缺陷工程化碳纳米管(v-CNTs)上,实现了氧还原催化领域的突破性进展。通过碳纳米坑处的共价键合形成的轴向In–C配位,打破了平面In–N4中心的对称电子分布,同时促进了强健的电子金属-载体相互作用。密度泛函理论揭示,这种电子不对称性优化了O2吸附/解离动力学,并降低了*OH中间体脱附的能量障碍,从而协同加速了四电子氧还原反应路径。该InPPc/v-CNTs催化剂展现卓越性能:半波电位达0.90 V,动力学电流密度达42.9 mA cm⁻²(远超基准Pt/C的10倍以上),并在30小时内保持优异稳定性。在液态锌空气电池中,该催化剂峰值功率密度达270 mW cm⁻²,并能稳定放电865小时,性能超越多数酞菁类及非贵金属氧还原反应催化剂。此外,在准固态锌空气电池中,该材料展现出1.5伏的高开路电压、92.0mW cm−2的峰值功率密度,以及优异的可重复充电性和可折叠性。通过整合缺陷工程、电子不对称调制与高分子稳定化技术,本研究为邻苯二甲酰亚胺类分子电催化剂在下一代可持续能源系统中的未来研究方向提供了新思路。
文献
:https://doi.org/10.1002/adma.202522225
![]()
来源:材料分析与应用
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.