
1成果简介
![]()
锌空气电池因其高能量密度和环保特性而备受关注,但氧还原和氧析出反应的缓慢动力学仍是一个关键挑战。为解决这一问题,本文,江苏科技大学Deqing He、Chao Su等研究人员在《Energy Fuels》期刊发表名为“CoWO4/WO3 Anchored on Nitrogen-Doped Carbon Substrate: A Bifunctional Electrocatalyst for High-Efficient Zinc–Air Batteries”的论文,研究设计并合成了钴钨酸盐(CoWO₄)/钨酸盐(WO₃)锚定于氮掺杂碳基底上的双功能电催化剂,用于锌空气电池,以实现高效率。将钴引入WO₃纳米颗粒促进了双金属氧化物CoWO₄的形成,从而暴露更多电催化活性位点。CoWO₄的引入显著提升了电荷转移效率和氧气物种吸附能力。在碱性条件下,CoWO₄/WO₃@N–C在氧气物种转化动力学方面表现出显著改善。采用CoWO₄/WO₃@N–C的锌空气电池实现了110 mW·cm⁻²的峰值功率密度,同时保持了优异的循环稳定性。这些研究为设计高效双金属氧化物催化剂提供了新思路,并推动了锌空气电池的更广泛应用。
2图文导读
![]()
图1. Illustration of synthetic process WO3@N–C and CoWO4/WO3@N–C.
![]()
图2. (a, b) XRD patterns of WO3@N–C and CoWO4/WO3@N–C. (c) XPS full spectrum. XPS spectra of (d) C 1s, (e) O 1s, and (f) W 4f for WO3@N–C and CoWO4/WO3@N–C.
![]()
图3. (a, b) SEM images of CoWO4/WO3@N–C. (c) TEM image of CoWO4/WO3@N–C. (d, e) HRTEM images of CoWO4/WO3@N–C. (f) HAADF image of CoWO4/WO3@N–C. (g–k) The corresponding elemental mappings of CoWO4/WO3@N–C.
![]()
图4. (a) CV curves of WO3@N–C and CoWO4/WO3@N–C. (b) LSV curves of WO3@N–C, CoWO4/WO3@N–C and Pt/C at 1600 rpm for ORR and (c) corresponding Tafel plots. (d) The electron transfer number of CoWO4/WO3@N–C at different voltages. (e) I-t curves at 0.36 V and (f) methanol crossover tolerance of CoWO4/WO3@N–C and Pt/C.
![]()
图5. (a) LSV curves of WO3@N–C, CoWO4/WO3@N–C and RuO2 at 1600 rpm for OER and (b) corresponding Tafel plots. (c) I-t chronoamperometric responses at 1.75 V and (d) Nyquist plots of CoWO4/WO3@N–C and RuO2.
![]()
图6. (a) The electric double-layer capacitance of WO3@N–C and CoWO4/WO3@N–C. (b) Calculated ECSA values from double-layer capacitance. (c) Overall polarization curves of WO3@N–C, CoWO4/WO3@N–C and Pt/C+RuO2. (d) TOF values at different potentials of WO3@N–C and CoWO4/WO3@N–C.
![]()
图7. (a) Schematic diagram of ZABs. (b) Open-circuit voltage. (c) Polarization curves and power density curves. (d) Constant-current discharge curves. (e, f) Long-term cycling stability of ZABs based on CoWO4/WO3@N–C and Pt/C+RuO2 at 5 and 10 mA·cm–2. (g) Long-term cycling stability at different current densities.
3小结
综上所述,我们通过多步水热法,以氮掺杂碳纳米颗粒为载体,合成了CoWO₄/WO₃@N–C双功能电催化剂。WO₃、CoWO₄和N–C各自在氧还原反应(ORR)和氧析出反应(OER)中发挥其独特优势,通过组合实现协同效应。这种组合下的协同效应显著提升了CoWO₄/WO₃@N–C对氧气种类的电化学活性面积和吸附能力,从而加速了反应动力学,大幅提升了其原始催化活性。当组装为ZAB时,该催化剂的峰值功率密度达到110 mW·cm–2,并能稳定运行700小时,优于传统的Pt/C+RuO2催化剂。CoWO4/WO3@N–C的设计策略为高性能ZAB空气电极催化剂的设计提供了宝贵思路。
文献:
https://doi.org/10.1021/acs.energyfuels.5c03195
![]()
来源:材料分析与应用
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.