网易首页 > 网易号 > 正文 申请入驻

ACL 2024 | 基于知识指令的人类语言-蛋白质语言对齐模型

0
分享至

近年来,大型语言模型如ChatGPT和Claude-2已经在自然语言处理领域带来了革命性的变革。这些模型已经广泛应用于日常生活中的多个方面,例如语言翻译、信息获取以及代码生成。然而,尽管这些语言模型在处理自然语言和代码语言方面表现出色,它们在生物序列(如蛋白质序列)的处理上却显得力不从心。当要求这些模型描述蛋白质序列的功能或生成具有特定性质的蛋白质时,它们经常无法准确遵循指令或给出错误的答案。这种情况的发生主要是因为目前的蛋白质-文本对数据集存在两大缺陷:一是缺少明确的指令信号;二是数据注释的不平衡。这两个问题导致模型难以有效建模蛋白质序列,也无法准确理解用户的意图。

为了解决这些问题,本文提出了一种自动构建蛋白质-文本指令数据集的方法。通过在这一数据集上进行指令微调,模型的蛋白质序列理解能力和遵循指令的能力可以得到大幅提升。本文首次探索了在蛋白质语言和人类语言间的双向生成能力,展示了将生物序列整合到大型语言模型的能力,为这些模型在科学领域的应用开辟了新的可能性。

论文题目: InstructProtein: Aligning Human and Protein Language via Knowledge Instruction 论文链接: https://arxiv.org/abs/2310.03269 代码链接: https://github.com/HICAI-ZJU/InstructProtein

一、方法

1.1 注释不均衡问题

在子细胞器位置分类的研究中,我们面临着一个数据不均衡的问题。具体来说,根据所描述的图表,共有446种不同的子细胞器位置分类。其中,注释数量最多的前五大分类占据了总注释量的62.9%,而有大量的分类仅出现了一次,它们各自只占总注释量的极小比例(0.000224%)。这种严重的不均衡性对大型语言模型的预测性能产生了负面影响。

当我们尝试用不同的大型语言模型来预测子细胞器位置时,可以观察到,它们的预测结果也呈现出与训练数据相似的不均衡性。换句话说,模型往往倾向于预测那些在训练数据中注释量多的位置,而较少预测那些罕见的位置。

因此,在构建指令数据集时,我们不能简单地依赖现有的大型语言模型。我们需要采用其他策略或方法来确保数据集中各 类子细胞器位置的合理代表性,从而让模型能够更加公平和准确地学习和预测这些位置。这可能包括人为介入以平衡数据集、使用合成数据来增强稀有类别的表示,或者开发新的模型架构和训练方法来更好地处理此类不均衡数据。

1.2 知识指令

本文提出了一种名为“知识指令”的数据构建方法,这一方法通过利用知识图谱和大语言模型的协同工作,以构建一个平衡且多样化的指令数据集。该方法的核心在于,它不依赖于大语言模型对蛋白质语言的理解能力,从而避免了因模型偏误或幻觉而引入的虚假信息。

具体的构建过程分为三个主要阶段:

1. 知识图谱的构建:

  • 文章选用了蛋白质信息库UniProtKB作为主要数据源。由于UniProtKB中的数据本身具有很强的结构性,所以可以较为容易地将其转换为知识图谱的格式。

  • 为了在指令数据中能有效反映不同蛋白质之间的逻辑关系,文章在知识图谱中添加了三元组之间的因果关系。这种设计有助于增强数据的逻辑性和实用性。

2. 从知识图谱中抽取蛋白质-文本对:

  • 为了保证数据集的多样性和平衡性,文章采用了一种基于蛋白质聚类的方法。在此过程中,首先计算蛋白质之间的序列和性质相似度,并依据这些相似度将蛋白质分组。

  • 序列相似性是通过比较两个序列的一致性来评估的。性质相似度则是根据知识图谱中的嵌入计算得出,具体方法是比较两个蛋白质嵌入向量的距离。

3. 指令数据的生成:

  • 最后一步是将选择的蛋白质-文本三元组转换成实用的指令数据。这一转换过程中,文章利用了现有的大语言模型以及知识图谱中的信息。

  • 利用大型语言模型根据知识图谱补全任务提供的模板,将抽取的信息转化为具体的指令,确保生成的指令既准确又具有指导意义。

通过这种方法,可以在不依赖预设模型理解蛋白质语言的前提下,有效地创建出一个既丰富又平衡的蛋白质函数和位置的指令数据集,为后续的蛋白质功能研究和应用提供更可靠的数据支持。

1.3 模型训练

在本文提出的知识指令数据集构建方法中,训练过程分为两个阶段:多语言预训练指令微调。在多语言预训练阶段,本文利用了生物相关的大型文本数据库来增强模型在生物领域的语言理解和知识背景。多语言指的是处理自然语言(如英文摘要)和生物序列语言(如蛋白质序列)的能力。文章使用了使用了UniRef100和PubMed中的摘要作为语料。指令微调阶段的目标是优化模型以理解和遵循针对特定生物学任务的指令。

这个阶段利用从UniProt/Swiss-Prot数据库中构建的指令数据集对模型进行微调训练。通过预训练和微调的组合,得到的模型——称为InstructProtein——能够更好地执行涉及蛋白质序列的各种预测和注释任务,比如准确预测蛋白质的功能或者定位到特定的亚细胞位置。这对蛋白质工程、药物发现以及更广泛的生物医学研究可能具有重要意义。

二、实验

本文通过全面的实验评估了大语言模型InstructProtein在蛋白质序列理解和设计方面的能力。研究覆盖了多个方面,包括蛋白质分类任务、蛋白质设计任务,以及消融实验,旨在了解不同因素对模型性能的影响。

2.1 蛋白质理解

在蛋白质理解方面,本文评估了模型在以下三个分类任务上的性能:蛋白质位置预测、蛋白质功能预测 (基于Gene Ontology分类)、蛋白质金属离子结合能力预测。这些任务被设计成类似于自然语言中的阅读理解问题,其中每条数据包含一条蛋白质序列及一个问题,模型需回答是/否类型的问题。

在蛋白质序列理解和分类任务上,InstructProtein展示了优异的表现,超越了所有基线模型。研究指出,将蛋白质和自然语言结合的训练语料库有利于提高语言模型在蛋白质语言理解方面的能力。特别值得注意的是,InstructProtein在多种任务(包括指令数据集中见过的和没见过的任务)上显示出较强的泛化能力,而其他模型如Mol-Instructions因模板不足而未能有效理解任务需求。此外,封闭源模型(如ChatGPT等)也显示出在蛋白质位置预测任务中受到注释不平衡的影响,这进一步强调了优质指令数据集的重要性。值得注意的是,在蛋白质位置预测(Bin)任务中的奇怪结果是因为现存的大语言模型受到注释不平衡的影响将所有蛋白质分类为单一组

3.2 蛋白质设计

在蛋白质设计方面,文章设计了一个“指令蛋白配对”任务:给定一个蛋白质及其描述,模型需要从其对应描述及九个不对应的描述中选择最合适的一项。在指令-蛋白质配对任务中,InstructProtein显著超越了所有基线模型,展现出其在指令跟随和蛋白质设计方面的优越性。BioMedGPT因只专注于将蛋白质转换为文本而缺乏蛋白质设计能力。Galactica由于其训练数据集是以叙述性蛋白质语料为主,因此在零样本任务中与指令对齐的性能有限。Mol-Instructions没有在蛋白质语料上进行预训练,难以分辨蛋白质的细微差异,导致性能不佳。这些结果验证了我们模型在遵循设计指令方面的出色能力,强调了针对特定任务进行预训练和数据集优化的重要性,以提升模型在蛋白质设计方面的性能。

文章还探讨了结构相关指令和功能相关指令的蛋白质生成:InstructProtein 的研究展示了其在依据结构相关指令生成新蛋白质序列方面的有效性。通过使用 SCOPe 分类和 ColabFold 预测每个蛋白质序列的可折叠性,结果显示模型规模的增加能够产生更少内在无序区域的蛋白质。此外,通过 ESM2 和多维缩放算法对生成的全 -螺旋和全 -折叠蛋白质进行可视化,证明了模型遵循指令的能力。在功能相关的设计中,InstructProtein 成功设计了与血红素结合的蛋白质,其结合亲和力和结构预测评分均表明了良好的设计性能。结合 HHblits 对同源性的检查也显示了序列的新颖性。这些结果表明 InstructProtein 在基于自然语言的蛋白质设计中具有高效且创新的潜力。

2.3 消融实验

通过对数据集构建策略和知识因果建模进行的消融研究显示:在蛋白质位置预测等注释不平衡明显的任务中,相似蛋白质的聚类采样可以显著提高模型性能。在注释平衡的情况下(如GO任务),单纯基于序列的聚类可能降低了模型表现。通过同时考虑序列和性质的相似性可以避免这种下降。对于聚类方法,基于知识图谱嵌入距离的方法比编辑距离更能有效地捕捉性质相似性。引入的知识因果关系能够进一步提升模型性能。

三、总结

InstructProtein 是一种融合蛋白质语言和人类语言的大型双向生成语言模型,通过将原始的蛋白质-文本语料库转化成结构化的知识图谱来生成高质量的指令数据集。然而,像其他大型语言模型一样,InstructProtein 也存在处理数值任务的挑战,这在需要定量分析的蛋白质建模领域尤为重要,比如3D结构的确立、稳定性评估和功能评价。未来的研究将包括定量描述在内的更广泛指令范围,以增强模型提供定量输出的能力,从而推进蛋白质语言和人类语言的整合,并拓展其在不同应用场景下的实用性。

作者:王泽元 来源:公众号【ZJUKG】

llustration From IconScout By Husein Signart

-The End-

扫码观看!

本周上新!

“AI技术流”原创投稿计划

TechBeat是由将门创投建立的AI学习社区(

www.techbeat.net
) 。 社区上线500+期talk视频,3000+篇技术干货文章,方向覆盖CV/NLP/ML/Robotis等;每月定期举办顶会及其他线上交流活动,不定期举办技术人线下聚会交流活动。我们正在努力成为AI人才喜爱的高质量、知识型交流平台,希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。

投稿内容

// 最新技术解读/系统性知识分享 //

// 前沿资讯解说/心得经历讲述 //

投稿须知

稿件需要为原创文章,并标明作者信息。

我们会选择部分在深度技术解析及科研心得方向,对用户启发更大的文章,做原创性内容奖励

投稿方式

发送邮件到

chenhongyuan@thejiangmen.com

或添加工作人员微信(chemn493)投稿,沟通投稿详情;还可以关注“将门创投”公众号,后台回复“投稿”二字,获得投稿说明。

关于我“门”

将门是一家以专注于数智核心科技领域新型创投机构,也是北京市标杆型孵化器。 公司致力于通过连接技术与商业,发掘和培育具有全球影响力的科技创新企业,推动企业创新发展与产业升级。

将门成立于2015年底,创始团队由微软创投在中国的创始团队原班人马构建而成,曾为微软优选和深度孵化了126家创新的技术型创业公司。

如果您是技术领域的初创企业,不仅想获得投资,还希望获得一系列持续性、有价值的投后服务,欢迎发送或者推荐项目给我“门”:

bp@thejiangmen.com

点击右上角,把文章分享到朋友圈

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
哈马斯禁止加沙城平民南撤,以将其作为阻挡以军进攻的肉盾

哈马斯禁止加沙城平民南撤,以将其作为阻挡以军进攻的肉盾

近距离
2025-09-15 18:53:09
12秒87名将折戟!徐卓一险胜,中国跨栏新希望靠谱吗?

12秒87名将折戟!徐卓一险胜,中国跨栏新希望靠谱吗?

阿晞体育
2025-09-16 09:27:11
西贝的史诗级灾难公关,带偏预制菜上市龙头

西贝的史诗级灾难公关,带偏预制菜上市龙头

诗与星空
2025-09-15 08:00:15
已确认!明天起影响浙江

已确认!明天起影响浙江

浙江之声
2025-09-16 15:27:56
网红“柴怼怼”被刑拘,顾客4万买玉石价格鉴定仅3千元,首批送检玉石多件系染色处理,很多没有鉴定价值

网红“柴怼怼”被刑拘,顾客4万买玉石价格鉴定仅3千元,首批送检玉石多件系染色处理,很多没有鉴定价值

极目新闻
2025-09-16 13:56:05
故事:2万战败日本关东军,竟带1万妇女消失在长白山,77年不知所踪

故事:2万战败日本关东军,竟带1万妇女消失在长白山,77年不知所踪

古怪奇谈录
2025-02-24 16:32:08
太丢人了,菲律宾举白旗投降,中方放出视频狠狠打脸菲方媒体

太丢人了,菲律宾举白旗投降,中方放出视频狠狠打脸菲方媒体

淡然小司
2025-09-16 18:44:43
中美在马德里第4轮交锋,特朗普发出长文,破天荒承认美国不行了

中美在马德里第4轮交锋,特朗普发出长文,破天荒承认美国不行了

博览历史
2025-09-15 20:30:09
农业农村部部长韩俊:严禁退休干部到农村占地建房

农业农村部部长韩俊:严禁退休干部到农村占地建房

政知新媒体
2025-09-16 12:18:51
【人物】乌姆蒂蒂,为世界杯冠军赔上职业生涯

【人物】乌姆蒂蒂,为世界杯冠军赔上职业生涯

体坛周报
2025-09-16 07:10:20
坚持不向中国市场低头,退出中国7年后,如今铃木后悔了吗?

坚持不向中国市场低头,退出中国7年后,如今铃木后悔了吗?

老斉科普君
2025-09-15 19:56:25
超300万人抢 iPhone 17:是跟风还是刚需?看完这几点你就懂了

超300万人抢 iPhone 17:是跟风还是刚需?看完这几点你就懂了

大卫聊科技
2025-09-14 11:52:14
曾经很火的鲈鱼,现在为啥吃的人越来越少了,5个原因,太现实了

曾经很火的鲈鱼,现在为啥吃的人越来越少了,5个原因,太现实了

小谈食刻美食
2025-09-16 08:57:29
江苏一学院党委书记调整

江苏一学院党委书记调整

黄河新闻网吕梁频道
2025-09-16 11:55:39
全世界都被俄罗斯耍了,侵入波兰只是一个幌子,真正目标曝光

全世界都被俄罗斯耍了,侵入波兰只是一个幌子,真正目标曝光

南宫一二
2025-09-16 08:40:16
烧钱数百亿,饿了么份额飙升300%!美团利润暴跌89%,京东成季军

烧钱数百亿,饿了么份额飙升300%!美团利润暴跌89%,京东成季军

李砍柴
2025-09-15 18:55:43
听陈道明一番话,终于懂为何唐嫣拿下视后,85花却集体“沉默”

听陈道明一番话,终于懂为何唐嫣拿下视后,85花却集体“沉默”

做一个合格的吃瓜群众
2025-09-16 16:40:27
中国大满贯赛来了,国乒参赛名单和赛程公布,林诗栋是否迎转折点

中国大满贯赛来了,国乒参赛名单和赛程公布,林诗栋是否迎转折点

体育大学僧
2025-09-15 17:54:42
百度资深副总透露:李彦宏在百度没写过一行代码!李彦宏:我是刻意控制不写的!网友:可惜了

百度资深副总透露:李彦宏在百度没写过一行代码!李彦宏:我是刻意控制不写的!网友:可惜了

大白聊IT
2025-09-16 15:07:36
1950年,毛岸英看望外婆向振熙,问她有什么要求,向:我要10万元

1950年,毛岸英看望外婆向振熙,问她有什么要求,向:我要10万元

抽象派大师
2025-09-16 08:41:35
2025-09-16 19:44:49
将门创投 incentive-icons
将门创投
加速及投资技术驱动型初创企业
2220文章数 591关注度
往期回顾 全部

科技要闻

理想i6定档9月26日发布,定位纯电五座SUV

头条要闻

厅官受审:攀附省委书记妻子获提拔 受贿4000万买别墅

头条要闻

厅官受审:攀附省委书记妻子获提拔 受贿4000万买别墅

体育要闻

乌姆蒂蒂,为世界杯冠军赔上职业生涯

娱乐要闻

李小璐母亲:女儿嫁给贾乃亮我好后悔

财经要闻

扩大服务消费 9部门提出5方面19条举措

汽车要闻

650km续航 广汽埃安AION RT焕新款9月22日上市

态度原创

房产
艺术
健康
手机
亲子

房产要闻

当海口书包房卷向「未来」,这里的孩子和房价,都在高速超车!

艺术要闻

故宫珍藏的墨迹《十七帖》,比拓本更精良,这才是地道的魏晋写法

内分泌科专家破解身高八大谣言

手机要闻

联发科天玑9500定档9月22日发布:首破400万跑分 刷新安卓记录!

亲子要闻

我该怎么办呢?

无障碍浏览 进入关怀版