一:锂电池发展目标
1、更快的充电速度,当前智能手机的充电倍率普遍在1C,而最大充电倍率已经达到6C,最快16min即可将手机充至满电;
2、更高的能量密度,目前4.45V体系平台已经成熟商业化,4.48V甚至更高的电压平台成为了热门的研究方向;
3、更长的循环寿命,过去几年3C锂离子电池的使用寿命要求为500次循环,而目前各大厂商已经将其提高至800次循环。
在锂离子电池中,Li主要包括Li+从正极材料中脱出、Li+在电解液中迁移、Li+通过隔膜、Li+嵌入负极以及Li+在负极材料内部的扩散。提高锂离子电池的性能一般需要考虑:
![]()
(1)负极材料
石墨材料具有二维层状结构以及低电压平台等优势,层间C-C间距可达0.340nm,且Li+可嵌入石墨的层间,形成层间化合物LixC6,成为最常用的负极材料之一。
石墨的层状结构使得Li+必须从石墨的端头嵌入,继而扩散至颗粒内部,增长了扩散路径。小的层间距使得Li+的扩散速率较低,在进行大倍率充电时,Li+容易在石墨表面沉积形成大量锂枝晶,造成安全隐患。常用表面包覆改性来改善材料的性能。
软硬碳的层间距比石墨稍大,有利于锂离子的扩散,通常石墨表层包覆软硬碳改善石墨的电化学性能,即通过表面修饰作用,在石墨表面形成无定形结构的碳层,增加了锂离子通道,改善锂离子扩散,提升其倍率性能。在设计锂离子电池时,通常采用小颗粒以及软硬碳包覆的负极材料。
(2 )电解液
高浓度电解液表现出优异的倍率性能。为了更好地实现电池性能,应选择具有高浓度、高电导率以及低粘度的电解液。
(3 )隔膜
隔膜的质量决定了电池的界面结构、内阻等,直接影响电池的倍率、循环以及安全性能等特性。为确保隔膜具有电子绝缘性、低电阻、高离子电导率、耐电解液腐蚀、高浸润性等性能,在选用隔膜时主要考察隔膜的厚度、孔隙率、透气率、浸润度、孔径、穿刺强度和热稳定性等指标。其中隔膜的厚度、孔隙率和透气度对锂离子电池快充影响较大。厚度薄,孔隙率大,透气度高时,锂离子从正极传输到负极的阻碍就小,充电过程中的极化作用就小。隔膜的厚度和孔隙率影响着锂离子电池的充电性能。在设计电池时,一般选择薄的和高孔隙率的隔膜。
(4)极耳结构
锂离子电池的内部结构根据其制作方式主要分为4种:普通结构、极耳中置结构、多极耳结构、叠片结构。
极耳的位置对于锂离子电池内阻以及倍率有明显的影响,极耳处于正负极的中间时,电池的内阻以及倍率性能最好,其性能接近叠片工艺的电池。
![]()
在电池倍率性能方面,二者的小倍率性能差异不大,大倍率差异明显。其主要原因是极耳中置结构极耳在极片的中部,放电过程中电子从中间向两端扩散,电流较小时,载体通过电子能力足够,而大倍率时,电子数目过多,通道阻塞,导致其大倍率性能差,同时极片也会产热,导致其循环性能差。
多极耳结构的优势有:进一步降低电池阻抗,提高电池大倍率充放电性能,支持5C~10C放电;有效降低电池高倍率放电下的温升,10C放电电池表面温升低于20℃;电池温度低,显著增加电池循环使用寿命。多极耳卷绕电池的内阻比极耳中置电池小很多,其恒流充电容量占总容量的百分比也较大。
![]()
相比多极耳卷绕,叠片电池每层都引出一个极耳,此种结构制作的电池快充性能是目前各种结构中最高的。
(5)设计因素
锂离子电池的性能与电池的设计有密切的关系,极片涂布量、压实密度、铜箔铝箔的厚度、极耳的尺寸、极片的宽窄等均对电池的快充性能有很大的影响。电池面密度以及压实密度对电池的倍率、循环等性能影响比较明显,快充型锂离子电池需要低面密度设计,而压实密度过高或者过低均会导致其性能差,压实密度过高,极片活性物质被“压死”,导致其循环容量迅速跳水,而压实密度过低,导致其活性物质之间的接触不够,电池的阻抗较大,导致其性能较差。
不同箔材厚度对于锂离子电池性能的影响,厚的箔材由于其导电性更好,电池的阻值、倍率等性能均优于薄箔材,但是由于其厚度增加,势必会导致电池能量密度的降低。另外,电池极片的长短、宽度以及电池的大小也会对电池的性能有一定的影响。
(6)其他因素
构建导电网络能够优化电极材料的电学性能,对实现锂电池具有现实意义。
粘结剂作为锂离子电池的辅料,在电池中的用量非常少,但其对于电池性能的影响非常大,其主要作用是改善电池的阻值,提升电池的性能以及寿命。通过采用不同的合成方法以及调整SBR的表面可以提升电解液对于SBR的浸润性,达到提升电池的低温以及倍率性能的目的。
通过对锂离子电池集流体进行导电涂层改性,集流体与锂离子电池的活性物质之间的粘结力大幅度提升,电池的阻抗明显减小,可以明显提升锂离子电池的大倍率充放电性能。另外,在实际使用过程中,改性载体的使用还可以改善极片头尾厚度差异大的问题,可以进一步提升锂离子电池的寿命。
锂离子电池的充电过程分成两步,第一步恒流充电至电池最大电压,第二步是在该电压下恒压充电,恒压充电过程中电流逐渐减小,当电流减小至设定电流时即结束充电,恒压充电阶段时间长且充入的容量少,高压过充的思路就是减小恒压充电,增大恒流充电比例。
来源:网络
免责声明:凡本公众号注明“来源”的文章、视频、图片等均转自相关媒体或网络,转载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。其版权归原作者和原出处所有,如有侵权,请及时通知我们,以便第一时间删除。

【若二维码失效,请添加微信:3120448392 拉进微信群】
![]()
如果喜欢,请点个赞~~
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.