网易首页 > 网易号 > 正文 申请入驻

刚刚,梁文锋发Nature了!

0
分享至


智东西
作者 陈骏达
编辑 李水青

昨晚,DeepSeek再度开创历史!

智东西9月18日报道,9月17日,由DeepSeek团队共同完成、梁文锋担任通讯作者的DeepSeek-R1推理模型研究论文,登上了国际权威期刊《自然(Nature)》的封面。

DeepSeek-R1论文首次公开了仅靠强化学习,就能激发大模型推理能力的重要研究成果,启发全球AI研究者;这一模型还成为全球最受欢迎的开源推理模型,Hugging Face下载量超1090万次。此番获得《自然》的认证,可谓是实至名归。

与此同时,DeepSeek-R1也是全球首个经过同行评审的主流大语言模型。《自然》在社论中高度评价道:几乎所有主流的大模型都还没有经过独立同行评审,这一空白“终于被DeepSeek打破”。

《自然》认为,在AI行业中,未经证实的说法和炒作已经“司空见惯”,而DeepSeek所做的一切,都是“迈向透明度和可重复性的可喜一步”。


▲《自然》杂志封面标题:自助——强化学习教会大模型自我改进

发表在《自然》杂志的新版DeepSeek-R1论文,与今年1月未经同行评审的初版有较大差异,披露了更多模型训练的细节,并正面回应了模型发布之初的蒸馏质疑。


▲发表在《自然》杂志的DeepSeek-R1论文

在长达64页的同行评审文件中,DeepSeek介绍,DeepSeek-V3 Base(DeepSeek-R1的基座模型)使用的数据全部来自互联网,虽然可能包含GPT-4生成的结果,但绝非有意而为之,更没有专门的蒸馏环节。

DeepSeek也在补充材料中提供了训练过程中减轻数据污染的详细流程,以证明模型并未在训练数据中有意包含基准测试,从而提升模型表现。

此外,DeepSeek对DeepSeek-R1的安全性进行了全面评估,证明其安全性领先同期发布的前沿模型。

《自然》杂志认为,随着AI技术日渐普及,大模型厂商们无法验证的宣传可能对社会带来真实风险。依靠独立研究人员进行的同行评审,是抑制AI行业过度炒作的一种有效方式。

论文链接:

https://www.nature.com/articles/s41586-025-09422-z#code-availability

同行评审报告:

https://www.nature.com/articles/s41586-025-09422-z#MOESM2

补充材料:

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-025-09422-z/MediaObjects/41586_2025_9422_MOESM1_ESM.pdf

一、新版论文披露多个重要信息,R1安全性获全面评估

在了解新版论文的变化前,我们有必要先回顾下DeepSeek-R1论文的核心内容。

DeepSeek-R1的研究出发点,是当时困扰AI业内的一个重大问题。众所周知,推理能提升大语言模型的能力,但让模型在后训练阶段通过数据学习思维链轨迹,严重依赖人工标注,限制了可扩展性。

DeepSeek尝试通过强化学习,让模型自我演化发展出推理能力。在DeepSeek-V3 Base的基础上,DeepSeek使用GRPO作为强化学习框架,仅使用最终预测结果与真实答案的正确性作为奖励信号,未对推理过程施加限制,最终构建出DeepSeek-R1-Zero。

DeepSeek-R1-Zero通过强化学习成功掌握了改进的推理策略,倾向于生成更长的回答,每个回答中包含验证、反思和探索备选方案。


▲DeepSeek-R1-Zero答题正确率随着推理长度提升,模型训练中总体回答长度也不断提升

DeepSeek在DeepSeek-R1-Zero的基础上,采用多阶段训练结合RL、拒绝采样和监督微调,开发出DeepSeek-R1,使模型既具备强推理能力,又能更好贴合人类偏好。此外,团队还蒸馏出小型模型并公开发布,为研究社区提供了可用资源,推动思维链推理模型的发展与应用。

除了上述主要科研成果外,在最新版的论文和其他材料中,DeepSeek新增了不少补充信息,让外界更深入地了解到模型训练和运作的细节。

基准测试数据污染是一个极为敏感的问题——如果厂商在训练时有意或无意包含了基准测试和相关答案,就很有可能导致模型在相关测试上的得分异常偏高,影响基准测试评分的公正性。

DeepSeek透露,为了防止基准测试数据污染,其已对DeepSeek-R1的预训练和后训练数据都实施了全面的去污染措施。以数学领域为例,仅在预训练数据中,DeepSeek的去污染流程就识别并删除了约六百万条潜在文本。

在后训练阶段,数学相关的数据均来自2023年之前的竞赛,并采用与预训练相同的过滤策略,确保训练数据与评测数据完全不重叠。这些措施保证了模型评测结果能够真实反映其解决问题的能力,而非对测试数据的记忆。

不过,DeepSeek也承认这种去污染方法无法完全防止对测试集的改写,因此在2024年之前发布的部分基准测试仍可能存在污染问题。

DeepSeek还为DeepSeek-R1新增了一份全面的安全报告。报告提到,DeepSeek-R1在服务部署中引入了外部风险控制系统,不仅可以基于关键词匹配识别不安全对话,还使用DeepSeek-V3直接进行风险审查,判断是否应拒绝响应。DeepSeek建议开发者在使用DeepSeek-R1时,部署类似的风险控制系统。

在公开安全基准测试和内部安全研究中,DeepSeek-R1在大多数基准上超过了Claude-3.7-Sonnet、GPT-4o等前沿模型。开源部署版本的安全性虽不及具备外部风险控制系统的版本,但仍拥有中等水平的安全保障。


DeepSeek-R1发布之初,曾有传闻称该模型使用了OpenAI的模型进行蒸馏,这也出现在审稿人的提问中。

对此,DeepSeek做出了正面回应,称DeepSeek-V3-Base的预训练数据全部来源于网络,反映自然数据分布,“可能包含由先进模型(如GPT-4)生成的内容”,但DeepSeek-V3-Base并没有引入在合成数据集上进行大规模监督蒸馏的“冷却”阶段。

DeepSeek-V3-Base的数据截止时间为2024年7月,当时尚未发布任何公开的先进推理模型,这进一步降低了从现有推理模型中无意蒸馏的可能性。

更重要的是,DeepSeek-R1论文的核心贡献,也就是R1-Zero,不涉及从先进模型进行蒸馏。其强化学习(RL)组件是独立训练的,不依赖于GPT-4或其他类似能力模型的输出或指导。

二、R1论文开创大模型科研新范式,《自然》盛赞其填补空白

在社论中,《自然》详细地分析了DeepSeek-R1经历完整同行评审流程,并登上期刊的价值。

大模型正在迅速改变人类获取知识的方式,然而,目前最主流的大模型都没有在研究期刊中经历过独立的同行评审,这是一个严重的空白。

同行评审出版物有助于阐明大模型的工作原理,也有助于业内评估大模型的表现是否与厂商宣传的一致。

DeepSeek改变了这一现状。DeepSeek在今年2月14日将DeepSeek-R1论文提交至《自然》,而直到7月17日才被接收,9月17日正式发布。

在这一过程中,有8位外部专家参与了同行评审,对这项工作的原创性、方法和鲁棒性进行了评估。在最终发布的版本中,审稿报告与作者回复都被一并披露。

智东西也深入研读了DeepSeek-R1论文的审稿意见与作者回复。这份文件长达64页,接近论文本身篇幅的3倍。


▲DeepSeek同行评审材料封面

8位审稿人共提出上百条具体意见,既包括对单词单复数等细节的修改,也涵盖对论文中将AI“拟人化”的警示,以及对数据污染和模型安全性问题的关注。

例如,在下方修改意见中,审稿人敏锐地捕捉到了“将DeepSeek-R1-Zero开源”这一表述的模糊性,并提醒DeepSeek,“开源”这一概念的界定仍存争议,在使用相关表述时需要格外注意。

这位审稿人还要求DeepSeek在论文中附上SFT和RL数据的链接,而不仅仅是提供数据样本。


▲一位审稿人的部分修改意见

DeepSeek认真回应了审稿人提出的每一个问题,前文提到的多个章节与补充信息,正是在审稿人的建议下新增的。

虽然DeepSeek也曾在今年1月发布DeepSeek-R1的技术报告,但《自然》认为,此类技术文档与实际情况之间的差距可能很大。

相比之下,在同行评审中,外部专家并不是被动接收信息,而是能够在独立第三方(编辑)的主持和管理下,通过协作提出问题,并要求论文作者补充信息。

同行评审能够提升论文的清晰度,并确保作者对其主张作出合理的论证。这一流程并不一定会对文章内容带来重大修改,但却能增强研究的可信度。对AI开发者而言,这意味着他们的工作会更为扎实,并更具说服力。

结语:DeepSeek开源模式或成行业典范

作为国产开源 AI 模型走向世界的代表,DeepSeek-R1在全球开源社区拥有极高的口碑。而在本次登上《自然》杂志封面后,DeepSeek又补充了这一模型的更多信息,为开源社区提供了科研参考、模型复现思路以及应用支持。

《自然》杂志呼吁更多的AI公司将其模型提交给同行进行评审,确保其声明经过验证和澄清。在这一背景下,DeepSeek的开源模式不仅展示了国产AI的技术实力,也有望成为全球AI行业在科研透明度方面的参考典范。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
中国台北羽毛球名将戴资颖官宣退役:谢谢羽毛球带给我的一切

中国台北羽毛球名将戴资颖官宣退役:谢谢羽毛球带给我的一切

懂球帝
2025-11-07 22:21:05
禁止特朗普绕过国会对委内瑞拉动武议案被否

禁止特朗普绕过国会对委内瑞拉动武议案被否

澎湃新闻
2025-11-07 07:38:04
美军上将大胆预言:解放军的统一之战,会以这个名义打响第一枪?

美军上将大胆预言:解放军的统一之战,会以这个名义打响第一枪?

健身狂人
2025-10-27 01:01:13
日本丑女花费2600万整形后的模样对比惊呆众人

日本丑女花费2600万整形后的模样对比惊呆众人

随波荡漾的漂流瓶
2025-11-05 17:25:03
湖南医生17分钟“桃色”事件:他们医术高超,造福患者更应被关注

湖南医生17分钟“桃色”事件:他们医术高超,造福患者更应被关注

汉史趣闻
2025-11-06 09:32:22
瞬间暴涨3倍!上海有人立马出手:好怕抢不到

瞬间暴涨3倍!上海有人立马出手:好怕抢不到

极目新闻
2025-11-05 15:06:20
爸爸去哪儿6个孩子现状:有人进国家队,有人出家,有人出国断联

爸爸去哪儿6个孩子现状:有人进国家队,有人出家,有人出国断联

观察鉴娱
2025-11-04 09:35:35
湖南一村支书因为克扣低保被村民捅死,更多内幕曝光

湖南一村支书因为克扣低保被村民捅死,更多内幕曝光

白马惊天剑
2025-11-06 20:54:41
爆大冷!争冠热门1:3出局,早田希娜剃光头,张本智和大战东道主

爆大冷!争冠热门1:3出局,早田希娜剃光头,张本智和大战东道主

知轩体育
2025-11-07 20:32:41
央视给足全红婵排面!罕见6分钟报道,最后安慰她的那段话封神了

央视给足全红婵排面!罕见6分钟报道,最后安慰她的那段话封神了

甜柠聊史
2025-11-07 11:50:27
分手传闻仅7月,关晓彤高调官宣喜讯,全网恭喜,终于等到这一天

分手传闻仅7月,关晓彤高调官宣喜讯,全网恭喜,终于等到这一天

君笙的拂兮
2025-11-06 14:15:18
媒体人:成都蓉城一年三换董事长,新一任在走流程了

媒体人:成都蓉城一年三换董事长,新一任在走流程了

懂球帝
2025-11-07 17:02:11
嫁老头太羞耻?白宫最年轻女秘书晒合照,把59岁丈夫P得比婴儿嫩

嫁老头太羞耻?白宫最年轻女秘书晒合照,把59岁丈夫P得比婴儿嫩

法老不说教
2025-11-07 19:01:16
炸裂!医生玩这么刺激?湖南副院长眼科主任混乱关系看得令人发麻

炸裂!医生玩这么刺激?湖南副院长眼科主任混乱关系看得令人发麻

阿銍武器装备科普
2025-11-05 23:51:30
郑丽文:“九二共识”可带来两岸和平,国民党将坚定走正确路线

郑丽文:“九二共识”可带来两岸和平,国民党将坚定走正确路线

澎湃新闻
2025-11-08 00:36:03
你敢信吗?全世界只有我们和日本自己,还执着地叫着“天皇”!

你敢信吗?全世界只有我们和日本自己,还执着地叫着“天皇”!

南权先生
2025-11-06 19:35:03
郑丽文主持蓝营中评会,多人缺席,幕后有主使?蔡正元表态亮了

郑丽文主持蓝营中评会,多人缺席,幕后有主使?蔡正元表态亮了

扶苏聊历史
2025-11-06 14:04:35
阿里巴巴主席蔡崇信:“AI泡沫”仅属于金融现象

阿里巴巴主席蔡崇信:“AI泡沫”仅属于金融现象

观点机构
2025-11-08 00:42:30
最大直辖市,“黑区”转正!这是好事么 | 地球知识局

最大直辖市,“黑区”转正!这是好事么 | 地球知识局

地球知识局
2025-11-07 18:29:15
HBO的这部封神之作,值得通宵去看

HBO的这部封神之作,值得通宵去看

来看美剧
2025-11-07 17:01:50
2025-11-08 01:36:49
智东西 incentive-icons
智东西
聚焦智能变革,服务产业升级。
10713文章数 116894关注度
往期回顾 全部

科技要闻

75%赞成!特斯拉股东同意马斯克天价薪酬

头条要闻

家长称男婴被两个不满12周岁女孩害死:拿她们没办法

头条要闻

家长称男婴被两个不满12周岁女孩害死:拿她们没办法

体育要闻

是天才更是强者,18岁的全红婵迈过三道坎

娱乐要闻

王家卫的“看人下菜碟”?

财经要闻

荷兰政府:安世中国将很快恢复芯片供应

汽车要闻

美式豪华就是舒适省心 林肯航海家场地试驾

态度原创

数码
健康
房产
本地
公开课

数码要闻

微软首款硬件Z - 80 SoftCard:80年代的意外“吸金王”

超声探头会加重受伤情况吗?

房产要闻

全国2025唯一“开盘即百亿”在广州诞生

本地新闻

这届干饭人,已经把博物馆吃成了食堂

公开课

李玫瑾:为什么性格比能力更重要?

无障碍浏览 进入关怀版