矗立千年的金字塔,吸引着无数科学家们的目光,他们无比希望能够一探金字塔内部的神奇奥秘。
2015年,在不破坏金字塔物理结构的前提下,科学家们开展了一项名为“扫描金字塔”(ScanPyramids)的计划。2017年11月2日,《Nature》杂志刊登了这一计划的最新研究成果:利用来自外太空的高能粒子,科学家们发现胡夫金字塔内一直隐藏着一个巨大的中空结构。
事实上,早在1967年,就有物理学家提出过这个精妙绝伦的计划:利用宇宙射线探测器探秘金字塔内部的房间结构!
他就是路易斯·阿尔瓦雷斯(Luis Alvarez),被《美国物理学杂志》评选为20世纪最有才华和创造力的实验物理学家之一。
1968年,因为“对基本粒子物理学作出的决定性贡献”,路易斯·阿尔瓦雷斯被授予该年度的诺贝尔物理学奖。
图1:路易斯·阿尔瓦雷斯
#1
物理学的启蒙教育
Luis Walter Alvarez was born on June 13, 1911, in San Francisco, California. His father, Walter Clement Alvarez, was a doctor and author who wrote a large number of medical books.
In 1926, when he was 15, his father changed jobs and the family moved to Rochester, Minnesota. Luis graduated from Rochester High School, then started a Bachelor of Science course at the University of Chicago in 1928, intending to major in chemistry.
After a couple of years, his grades in chemistry were not as good as he had hoped – he was scoring Bs. Also, he had also grown much more interested in physics, so he decided to major in physics instead. He graduated with a B.S. in physics in 1932,then continued as a graduate student at Chicago, where he was awarded a master’s degree in 1934, and a Ph.D. in physics in 1936.
路易斯·沃尔特 · 阿尔瓦雷斯(Luis Walter Alvarez)于1911年6月13日出生在加利福尼亚州的旧金山市。 他的父亲Walter Clement Alvarez是一名医生和作家, 参与编写了大量医学书籍。
1926年,路易斯15岁时,由于父亲的工作调动,他们全家搬到了明尼苏达州的罗切斯特市。 从罗切斯特高中毕业后,路易斯于1928年前往芝加哥大学攻读理科学士课程,主修化学专业。
但是,路易斯的化学成绩是B,并不像他期望的那样优秀。同时,他对物理学越来越感兴趣,因此路易斯决定改修物理学,并于1932年顺利毕业,获得物理学学士学位。本科毕业后,路易斯继续留在芝加哥大学攻读研究生课程,分别于1934年和1936年获得物理学硕士与博士学位。
图2:芝加哥大学
Even at the beginning of his time as a graduate student, Luis Alvarez was at the cutting-edge of physics. His doctoral advisor was Arthur Compton, winner of the 1927 Nobel Prize in Physics for his discovery that electromagnetic radiation, such as visible light, has particle-like properties.
In 1932, Alvarez built an array of Geiger counters to study cosmic rays. In 1933, using the data he had gathered, he and Compton published a paper in the Physical Review establishing that cosmic rays are positively charged particles.Compton gave much of the credit for the work to his young graduate student.
After completing his Ph.D. in 1936, Alvarez returned to his home state, beginning work as an experimental physicist at the University of California’s Radiation Laboratory in Berkeley.
研究生时期的路易斯·阿尔瓦雷斯就已经触摸到了物理学的最前沿,因为他的导师是阿瑟·康普顿(Arthur Compton)。1927年,康普顿因发现电磁辐射(如可见光)具有类似粒子的特性而被授予诺贝尔物理学奖。
1932年,阿尔瓦雷斯搭建了一个盖革计数器来研究宇宙射线。1933年,利用收集到的数据,阿尔瓦雷斯和康普顿在《物理评论》上发表了一篇论文:指出宇宙射线是带正电的粒子。康普顿将此项发现的大部分功劳归功于他年轻的研究生阿尔瓦雷斯。
1936年,获得博士学位的阿尔瓦雷斯回到了他的家乡,在加利福尼亚大学伯克利分校担任辐射实验室研究员。
图3:阿瑟·康普顿
#2
横跨多领域的科学天才
Luis Alvarez was a highly talented and highly imaginative experimental physicist.He had a particular talent for devising experiments.
One of the ways radioactive atoms transform into new elements is capture of an orbiting electron by the nucleus. The electron combines with a proton to form a neutron. The atom now has one proton fewer than it used to, and so has become a new element.
This process had been predicted by theorists but never observed. In 1937 Alvarez devised a new experiment to ask Mother Nature whether the process really happened.He looked for the X-rays expected to be emitted by a nucleus when it captured an electron.The experiment worked and K-electron capture became an established phenomenon in physics.
Luis Alvarez proved that K-electron capture was not just another theory-it actually happens.
路易斯·阿尔瓦雷斯是一位极具天赋和想象力的实验物理学家,在实验设计领域拥有卓越的才能。
轨道上的电子被原子核俘获是放射性元素衰变为新元素的方式之一。 被俘获的电子会与一个质子结合,转化为一个中子。 因此,原子核中会缺失一个质子,一种新元素就这样诞生了。
此前,科学家们已经从理论上预言了电子俘获的过程,但从未实际观测到它的发生。直至1937年,阿尔瓦雷斯设计了一个新的实验:通过寻找原子核俘获电子时发射的X射线,来验证电子俘获是否真实存在。实验成功了,K电子俘获成为了物理学中的一个既定现象。
路易斯·阿尔瓦雷斯证明了K电子俘获不只是一种理论假设,而是一种会真实发生的物理现象。
图4:原子核
Alvarez was an enthusiastic pilot; he learned to fly in 1933.
In the early 1940s he invented the Microwave Phased Array Antenna.This was a form of radar that gave ground crew unparalleled precision in determining the position of an aircraft in flight. The invention allowed ground crew to give clear instructions to pilots as their aircraft approached runways preparing to land.
The system was particularly useful when visibility was poor, such as in fog, or other adverse weather, or when pilots were inexperienced.Alvarez’s invention was used by the military and civil authorities in various countries for decades, greatly enhancing air safety.
阿尔瓦雷斯还是一名优秀的飞行员,他在1933年学会了驾驶飞机。
20世纪40年代初,阿尔瓦雷斯发明了微波相控阵天线,这是一种雷达设备,在帮助地勤人员确定飞行中的飞机位置方面具有无与伦比的精确性。这项发明使地勤人员能够在飞机接近跑道准备降落时向飞行员发出明确指示。
此外,在低能见度低的天气情况(例如大雾或其他恶劣天气)下,或者飞行员飞行经验不足时,该设备同样可以发挥重要作用。阿尔瓦雷斯的这项发明被广泛应用于多国的军事和民航飞行中,大大增强了航空安全保障力度。
图5:低能见度时交通管制员与飞机对话
In 1943, during World War 2, Alvarez was asked if it would be possible to tell scientifically if Germany had its own atom bomb project.He knew that research and development into atom bombs produces radioactive gases, such as xenon-133.These gases could be detected with the right equipment; and Alvarez was an equipment expert.He said aircraft should fly over Germany carrying radiation detectors to detect the telltale gases.The flights took place and found no evidence Germany had an atom bomb project.
In 1944, Alvarez arrived at Los Alamos, New Mexico, to work on the Manhattan Project. There he devised an electrical detonation method for the plutonium bomb.
1943年,第二次世界大战爆发期间,有人询问阿尔瓦雷斯能不能运用科学方法判断出德国是否在制造原子弹。阿尔瓦雷斯认为:研究和制造原子弹的过程中一定会产生放射性气体,如氙-133。这些气体可以被专业设备检测到,而阿尔瓦雷斯正是一位设备专家,只要驾驶携带辐射探测器的飞机飞越德国,就可以检测出空气中是否存在放射性气体。阿尔瓦雷斯的方法被采纳了,飞越德国上空的飞机带回的数据证明德国并没有在制造原子弹。
1944年,阿尔瓦雷斯来到新墨西哥州的洛斯阿拉莫斯,为曼哈顿项目工作。 在那里,他为钚弹设计了一种新型的电子引爆方式。
#3
亚原子粒子的新发现
When the war was over, Luis Alvarez moved back to Berkeley as a full professor. He was soon busy again with experimental physics.It was an exciting time to be in particle physics, and the atom smashers at Berkeley made it an ideal place for new discoveries.
When Alvarez first went university, only two fundamental particles had been known: the proton and the electron. By 1932, the year he completed his degree, the horizons of particle physics had widened greatly with the discovery of two new particles: the neutron, discovered by James Chadwick; and the positron, discovered by Carl Anderson.
Further discoveries – K mesons and hyperons – expanded the particle world in the late 1940s, and by 1950 the pion family of particles had become known.
These discoveries relied on a device called the cloud chamber, in which subatomic particles left vapor trails.
One day in 1953 Alvarez got talking to a young physicist. The young man was Donald Glaser. Over a meal at a conference,Glaser told Alvarez about his new invention – the bubble chamber – which was an improved way of tracking subatomic particles.Glaser would go on to win the 1960 Nobel Prize for this invention.
二战后,路易斯·阿尔瓦雷斯搬回了伯克利,成为了加利福尼亚大学伯克利分校的一名正式教授,重新投入于实验物理学的研究中。那是一个伟大的粒子物理学时代,伯克利实验室的原子粉碎机使它成为了物理学新发现的最佳诞生地。
阿尔瓦雷斯刚上大学时,科学家们只知道两种基本粒子的存在: 质子和电子。 1932年( 阿尔瓦雷斯 获得学士学位的那一年),粒子物理学的视野随着两种新粒子的发现而被大大拓宽: 中子—由詹姆斯·查德威克(James Chadwick)发现; 以及正电子—由卡尔·安德森(Carl Anderson)发现。 20世纪40年代末, K介子和超子的发现 扩展了粒子世界的新视野。 20世纪50年代,离子作为基本粒子开始为人所知。
这些新粒子的发现都离不开一种叫做云室的装置,在云室中,蒸汽会沿着亚原子粒子经过的路径凝结,留下粒子运动的径迹。
1953年的一天,阿尔瓦雷斯遇到了年轻的物理学家唐纳德·格拉塞(Donald Glaser)。在一次会议用餐时,格拉塞向阿尔瓦雷斯介绍了他的新发明—气泡室,一个被用于观测亚原子粒子活动径迹的新装置(格拉塞对云室做出了改进)。1960年,格拉塞因为这项发明而被授予该年度的诺贝尔物理学奖。
Alvarez thought about what Glaser had told him. Glaser had used a bubble chamber filled with liquid ether.Alvarez decided that a bubble chamber filled with liquid hydrogen would be a perfect way of tracking particles coming out of an accelerator.The idea was that the liquid hydrogen would boil wherever a high energy particle passed through it, leaving a trail whose path would allow the particle’s properties to be calculated. By early 1954, Alvarez had put together a small-scale liquid hydrogen bubble chamber at Berkeley.
By 1956, a large chamber was in operation.In the late 1950s this chamber was used to discovery a variety of new particles and resonance states.Alvarez was awarded the 1968 Nobel Prize for his decisive contributions to elementary particle physics.
阿尔瓦雷斯对格拉塞介绍给他的新发明非常感兴趣:一个充满液态乙醚的气泡室。但是阿尔瓦雷斯认为,一个充满液态氢的气泡室才是追踪高能粒子径迹的最佳装置。他提出了以下设想:只要有高能粒子通过气泡室,液态氢就会沸腾,留下粒子径迹,根据径迹就可以推算出粒子的特性。1954年初,阿尔瓦雷斯在伯克利实验室搭建了一个小规模的液氢气泡室。
1956年,一个更大规模的液氢气泡室被搭建完成并投入运行。20世纪50年代末,一大批新粒子和共振态在液氢气泡室中被成功发现。1968年,因为对基本粒子物理学作出的决定性贡献,阿尔瓦雷斯被授予该年度的诺贝尔物理学奖。
图8:穿过气泡室的亚原子粒子轨迹
In 1967, Alvarez had the ingenious idea thathidden chambers in Egypt’s pyramids could be revealed by making use of cosmic rays to take a X-ray type photo.
He placed a cosmic ray detector in an existing chamber below in the Pyramid of Chephren – the second largest of the Pyramids of Giza.The rate that cosmic rays arrived at the detector would reveal any spaces within the pyramid’s structure.Alvarez was able to study about one-fifth of the pyramid’s volume, but found no new chambers.
1967年,阿尔瓦雷斯又萌生了一个巧妙的想法:利用宇宙射线(X射线断层扫描技术),探测埃及金字塔的内部结构,寻找金字塔内部的隐藏房间。
阿尔瓦雷斯在切夫伦金字塔(吉萨古埃及金字塔中的第二大金字塔)下面的一个房间里放置了一个宇宙射线探测器。探测器捕捉到宇宙射线的速度可以揭示出金字塔的内部结构,找到未知的空间。阿尔瓦雷斯对切夫伦金字塔约五分之一的体积进行了探测,并没有发现新的密室。
图9:金字塔
他是技术卓越的飞行员,由路易斯·阿尔瓦雷斯参与改进的雷达技术,帮助地勤人员在低能见度的恶劣天气下向飞行员发出明确指示,为飞行安全提供了更大保障!
他也是才华横溢的大物理学家,由路易斯·阿尔瓦雷斯改进建造的氢泡室和测量仪,帮助科学家们观测到了寿命极短的粒子(共振态),为基本粒子物理学作出了决定性的贡献!
当然,我们也可以称他为科学界的“福尔摩斯”!正是得益于路易斯·阿尔瓦雷斯精益求精与不懈探索的科学精神,我们才得以在几十年前一探金字塔内部的神奇奥秘!
他的每一次探索,都是科学史上浓墨重彩的印记!
https://www.famousscientists.org/luis-alvarez/
资料来源:《Famous Scientists》
本文素材部分来源网络,如有侵权请联系删除。
转载内容仅代表作者观点
不代表中科院物理所立场
如需转载请联系原公众号
来源:博士科普
原文:诺奖人物科普篇(十九):Luis Alvarez,才华横溢的大物理学家!
编辑:深浅
1.2.
3 .
4.
5.
6.
7.
8.
9.
10.
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.