新京报讯(记者张璐)1月28日,智源多模态大模型成果“通过预测下一个词元进行多模态学习的多模态大模型”上线国际顶级学术期刊《自然》(Nature),预计2月12日纸质版正式刊发,这是我国科研机构主导的大模型成果首次在《自然》正刊发表。
2018年以来,GPT采用“预测下一个词元(Next-token prediction,NTP)”的自回归路线,实现了语言大模型重大突破,开启了生成式人工智能浪潮。
“预测下一个词元”彻底改变了语言模型,促成了如ChatGPT等突破性成果,并引发了关于通用人工智能(AGI)早期迹象的讨论。然而,其在多模态学习中的潜力一直不甚明朗。
多模态模型主要依赖对比学习、扩散模型等专门路线,自回归路线是否可以作为通用路线统一多模态?一直是未解之谜。
智源提出了Emu3,基于“预测下一个词元”的全新多模态模型,将图像、文本和视频统一离散化到同一个表示空间中,并从零开始,在多模态序列混合数据上联合训练一个单一的Transformer架构。这一架构证明了仅凭“预测下一个词元”,就能够同时支持高水平的生成能力与理解能力,并且在同一统一架构下,自然地扩展到机器人操作以及多模态交错等生成任务。
实验显示,Emu3在生成与感知任务上的整体表现可与多种成熟的任务专用模型相媲美:在文生图任务中,其效果达到扩散模型水平;在视觉语言理解方面,可以与融合CLIP和大语言模型的主流方案比肩。此外,Emu3还具备视频生成能力。
不同于Sora的扩散式视频生成,Emu3采用纯自回归方式逐词元(token)生成视频,能够在给定上下文下进行视频延展与未来预测,并在文本引导下生成高保真视频。此外,Emu3还可拓展至视觉语言交错生成,例如图文并茂的菜谱生成;也可拓展至视觉语言动作建模,如机器人操作VLA(视觉-语言-动作模型)等,进一步体现了“预测下一个词元”的通用性。
悟界·Emu3.5进一步通过大规模长时序视频训练,学习时空与因果关系,展现出随模型与数据规模增长而提升的物理世界建模能力,并观察到多模态能力随规模扩展而涌现的趋势,实现了“预测下一个状态”的范式升级。
智源这项成果表明,只采用自回归路线,就可以统一多模态学习,训练出优秀的原生多模态大模型,对于确立自回归成为生成式人工智能统一路线具有重大意义。
编辑 樊一婧
校对 杨利
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.