![]()
作者团队丨上海科学智能研究院、复旦大学团队
编辑丨ScienceAI
在心血管疾病诊断中,心电图(Electrocardiogram, ECG)是无可替代的基础工具,其中 12 导联心电图是临床使用的金标准。作为观察心脏电活动的“视角”,导联是由一正一负两个电极构成的一个记录电路,12 导联心电图即是通过体表 10 个电极组合构建出 12 个独特的电信号“视角”,同步捕捉心脏的电活动,形成一套多维度的波形图谱。
然而,面对海量的心电图数据,现有基于自监督学习的分析方法尽管提供了无需大规模标注数据的解决方案,其局限仍非常明显:它们往往未能充分建模心脏传导过程中细微的个体心搏差异,也缺乏与临床“从心搏到导联,再从导联到整体”的递进诊断逻辑相对齐的推理结构,导致在复杂病例诊断中表现受限。
为此,上海科学智能研究院(下称上智院)与复旦大学联合提出了 CLEAR-HUG 双阶段框架。该框架从心电图信号的生理本质出发,在预训练阶段显式建模心脏传导特征,并在诊断阶段紧密贴合临床判读的层级思维,实现了从信号表征到诊断推理的全流程优化。实验表明,该方法在六个权威公开数据集上平均性能提升达 6.84%,为开发高性能、可解释的 AI 辅助心电图诊断工具开辟了新路径。
![]()
论文链接:https://arxiv.org/pdf/2512.24002
该研究成果已被 AAAI 2026 接收。研究项目由星河启智科学智能开放平台和复旦大学 CFFF 智算平台提供技术和算力支持。
星河启智平台链接:https://aistudio.ai4s.com.cn
现有方法的两大局限
既往的心电图自监督学习(electrocardiogram self-supervised learning, eSSL)方法虽取得一定进展,但存在两个面向临床的关键短板:
一是忽视个体差异。
现有方法学会了看“大概”和“通常”,却难以识别那些“例外”与“异常”,而后者往往是临床诊断中更需要关注的信号。具体来说,现有方法主要让模型学习心电图信号中重复出现和普遍存在的模式——比如不同导联之间波形的同步性,或连续心搏间的形态相似性,却忽略了一个生理事实:每个心搏的传导路径存在自然的细微差异,而不同导联观察的解剖角度也本就不同。这些细节往往承载着重要的生理与病理信息,例如,一个偶发的、形态异常的室性早搏,在标准心电图中看起来就“很不合群”,但这恰恰是临床诊断需要捕捉的关键线索。
二是脱离临床逻辑。
为确保诊断的精确性和全面性,心电图临床诊断通常遵循“心搏→单导联→多导联组合”的层级流程:医生首先观察单个心搏的形态细节,判断其是否异常;然后在一个特定的导联上,分析连续心搏的节律和模式,确认异常是否持续存在;最后,综合所有 12 个导联的信息,像拼图一样将不同导联的发现进行组合与空间对应,从而精确定位心脏的病变部位并做出最终诊断。但是,现有模型在下游任务中常忽视这一递进式诊断逻辑,导致特征提取与诊断需求脱节。
为解决这些问题,研究团队从心脏传导机制和临床诊断规范双重视角出发,构建了 CLEAR-HUG 框架,实现从信号表征到诊断推理的全流程优化。该框架与人类专家的知识体系对齐,使得医生不仅能够获知“诊断结果是什么”,更能理解“模型为何做出该诊断”,从而推动心电图AI分析更加可解释。
![]()
图示:心脏传导机制。
CLEAR-HUG 的双阶段创新设计
CLEAR-HUG 框架包含预训练和微调两个阶段,分别对应特征学习与诊断适配,形成完整的技术闭环。
第一阶段,团队设计了名为“传导-导联重构器”(Conduction-LEAdReconstructor, CLEAR)的自监督模型,该模型能同时捕捉心跳的特异性变异与普遍共性。通过将每个心搏视为独特实体,该模型采用简洁高效的稀疏注意力机制,在排除其他心搏干扰的情况下重构信号。
第二阶段,团队构建了“分层导联统一分组头”(Hierarchical lead-UnifiedGroup head, HUG头)诊断模块,模拟临床诊断流程。
![]()
图示:双阶段训练
1.CLEAR 预训练,捕捉传导级细微特征
预训练阶段的核心是 CLEAR 模型,通过传导引导和视角引导的双重信息学习,精准重建心电图信号:
- 双重视角建模:将心电图信号分解为传导引导信息(同一心搏在各导联的时间同步特征)和视角引导信息(同一导联的空间异质性特征),全面捕捉信号本质。
- 稀疏注意力机制:设计专属注意力掩码,确保心搏重建仅依赖对应的心搏传导信息和导联全局上下文,避免其他心搏干扰,高效提取特异性特征。
- 掩码重建训练:采用 80% 的高掩码率,通过重建被掩盖的心搏 token,迫使模型学习深层生理特征而非表面模式,提升表征鲁棒性。
2.HUG 微调 ,模拟临床诊断流程
微调阶段引入 HUG 头,完全贴合临床心电图诊断的层级逻辑:
- 导联分组:按临床标准将 12 导联分为 3 组(双极肢体导联、加压单极肢体导联、胸前导联),每组通过独立线性层学习特征并平均。
- 成对组合:将三组特征进行两两组合,进一步捕捉导联间的互补信息。
- 全局聚合:整合所有组合特征,形成完整的多导联全局表征,作为最终诊断依据。
这种层级设计不仅提升了模型的可解释性,更让特征提取过程与医生诊断思维高度一致,实现从数据驱动到临床驱动的转变。
在六大数据集上超越现有最优方法
本研究在 MIMIC-IV-ECG 数据集上完成预训练后,于 PTB-XL、CPSC2018 及 CSN 三个公开数据集的六个下游任务上进行了系统评估,结果全面超越了现有最优方法(SOTA)。
具体而言,模型在平均性能上较当前 SOTA 提升了 6.84%,其中 CLEAR 单模型在预训练阶段贡献了 3.94% 的提升,而加入 HUG 诊断头后性能得到进一步改善,充分验证了双阶段设计的有效性。在低数据场景下,该方法展现出卓越的少样本迁移能力,例如,在仅使用 1% 训练数据的 PTBXL-Rhythm 任务中,CLEAR-HUG 较 SOTA 提升超 17%。
同时,在细粒度疾病分类任务上,层级分组策略的价值尤为凸显——在 CSN 数据集的 38 类疾病分类中,使用 1%、10% 与 100% 训练数据时,HUG 头相较基础模型分别带来 9.21%、5.81% 与 3.18% 的性能增益。
此外,该方法在关键特性上也表现出显著优势。其一,模型具有更强的稳健性,即使在部分导联缺失、仅保留两个核心导联的极端情况下,其性能仍优于现有 SOTA,能够很好地适应临床中数据不完整的实际场景。其二,模型展现出高度的临床适配性,通过激活可视化,HUG 头对不同疾病所激活的导联组合模式,与临床诊断标准高度一致,显著提升了模型的可解释性。
核心模块的必要性验证
为验证 CLEAR-HUG 框架中各核心组件的贡献,本研究进行了系统的消融实验。该方法遵循控制变量原则,通过逐步移除或调整模型中的特定设计,量化评估每个创新模块的实际价值。主要实验结果与发现如下:
- 传导建模的有效性验证:对比基础掩码自编码器,CLEAR 预训练通过传导引导稀疏注意力,在心律分析任务中提升 17.4%,证明了传导机制建模的重要性。
![]()
- 层级诊断结构的作用分析:移除 HUG 头后,模型在细分类任务中性能明显下降,验证了层级分组策略对复杂疾病诊断的关键作用。
![]()
- 预训练掩码策略的优化验证:不同掩码率实验表明,80% 的掩码率能平衡特征学习深度与训练稳定性,是最优选择。
这些实验从多个维度证实,CLEAR 与 HUG 两个核心模块均不可或缺,其设计共同支撑了模型在各项任务中的性能提升。
总结与展望
CLEAR-HUG 的成功,并不依赖于复杂的模型架构,而是根植于对医学本质的深刻洞察与巧妙融合。
首先,模型从生理机制出发,紧扣心脏传导这一心电信号的核心生成原理,使特征学习过程更贴合生理本质。其次,通过将模型流程与医生诊断逻辑深度对齐,在提升性能的同时也显著增强了结果的可解释性。此外,其轻量化设计与对缺失导联的适应能力,兼顾了效率与临床实用性,为实际部署扫除了障碍。
该研究不仅为心电分析提供了新的技术路径,也印证了 AI 医疗发展的关键方向——唯有将领域知识与人工智能技术深度融合,才能开发出真正赋能临床的实用工具。
展望未来,研究团队计划将本框架扩展至更多心血管疾病诊断场景,并探索与多模态医疗数据的融合应用,从而为智能医疗的落地持续注入新动力。
作者信息:
上智院实习生、复旦大学人工智能创新与产业研究院博士生潘覃和孙翊轩,为共同第一作者。
代码地址:
https://aistudio.ai4s.com.cn/galaxy-model/partner/galaxy-model-frontend/model/CLEAR-HUG#heading-1
https://github.com/Ashespt/CLEAR-HUG
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.