网易首页 > 网易号 > 正文 申请入驻

MIT打造大气水收集器,成功生成浓度低于0.06ppm的安全用水

0
分享至

美国加州的死亡谷(Death Valley)年降雨量不足 50 毫米,部分年份甚至无降雨。1849 年,一队淘金者试图穿越山谷,因恶劣气候导致有人丧生,幸存者离开时感叹“再见,死亡谷”,该山谷的名字便是由此而来。但正是这样一个干旱缺水之地,美国麻省理工学院赵选贺教授和团队打造出一款被动式大气水收集器(AWHW,Atmospheric Water Harvesting Window),它能在极端气候之下工作,并在死亡谷的实地测试中展现出卓越的日产水量,当相对湿度在 21% 至 88% 范围内时,日产水量可达 57.0 毫升至 161.5 毫升,高于所有以往被动式大气集水系统(SAWH,Sorption - based Atmospheric Water Harvesting)以及一些主动式系统。


(来源:https://newatlas.com/technology/mit-water-harvester)

并且,AWHW 无需电源或过滤器,使用寿命至少为 1 年,所收集的水符合严格的安全标准,能生成锂离子浓度低于 0.06ppm 的安全用水,符合美国地质调查局和美国环保局制定的指导方针。


(来源:https://newatlas.com/technology/mit-water-harvester)

AWHW 还是一种完全被动、实用且可规模化的系统。经更多测试之后,研究团队发现它可以从低至 18% 到高于 90% 的较为广泛的相对湿度范围内发挥作用,有望解决北非等地区的物理水资源短缺问题和印度北部等地区的经济水资源短缺问题。

这项技术不仅首次展示了被动式米级吸附式大气集水系统,还在日供水量和各种天气条件下的适应性方面树立了新的标准。



22 亿人的水资源短缺问题亟待得到解决

当前,全球超过 22 亿人面临水资源短缺问题,这一情况在欠发达地区、内陆地区或没有电网的地区尤为突出。

基于被动吸附剂的大气集水器,为把无处不在的大气水分转化为液态水提供了一种有前景的解决方案。然而,目前的方法受到低产水量(每天几毫升)、不安全锂离子释放和低相对湿度条件下效率低的限制。

为此,研究团队打造了这种名为 AWHW 的大气水收集器,这是一种安全可控的基于吸附的大气集水系统,并采用垂直折纸状水凝胶面板和窗式太阳能蒸馏器。

其设计涵盖了三个关键层级。在材料上,其采用超稳定吸湿性水凝胶;在结构上,通过垂直折纸阵列结构增强了水分吸附/脱附动力学性能;在装置上,窗体式冷凝器表面覆有透明辐射制冷薄膜。


图 | AWHW 的外观(来源:Nature Water)

也就是说,AWHW 包括一个垂直定向的吸附板,以及一个用作太阳能蒸馏器的玻璃窗。它按照昼夜工作周期运行,在夜间吸水、在白天解吸并收集水,并且无需任何电力输入。

吸附板由一种超稳定的吸湿性水凝胶构成,在组成上该水凝胶包含聚乙烯醇(PVA,poly(vinyl alcohol)基质、作为吸湿剂的氯化锂(LiCl)、作为相稳定剂的甘油以及作为光吸收剂的黑色墨水。


(来源:Nature Water)

这种独特的垂直吸附板可从其两侧进行水分吸附与解吸,与水凝胶膜或粉末的传统水平结构相比,这种方案更有可能让水分吸收和蒸发速率翻倍。

此外,研究团队创建了一个圆顶形折纸阵列,以便通过增加有效表面积,进而增强吸水/解吸的动力学性能。

根据克劳修斯-克拉佩龙方程,窗式腔体内的封闭空间更易发生冷凝现象。因此,研究团队将垂直吸附板集成到窗式太阳能蒸馏器中,以便提供一个优化水蒸发和冷凝的内部环境。与此同时,与金字塔形或三角形腔体相比,90° 的倾斜角度可使水滴收集过程更加顺畅。

鉴于 AWHW 直接暴露在天空下,研究团队在窗玻璃上涂上一层由极化聚偏氟乙烯-六氟丙烯(p-PVDF-HFP)制成的透明被动辐射冷却材料。这种涂层保持着较高的太阳透明度,使吸附板能够有效利用太阳能进行光热水蒸发,同时允许通过 8 微米-13 微米波长的热辐射将热量持续散发到四周。

与使用裸玻璃作为冷凝表面相比,研究团队观察到温度降低了约 0.5℃–1°C,这有助于在其附近形成更低的蒸气压,从而促进水的再冷凝。

此外,AWHW 包含一个铝制底座,它充当了一个高效散热体,能显著促进水蒸气再冷凝过程,尤其是在白天太阳辐射下。



先后在美国加州死亡谷和美国麻省开展实地集水测试

基于超稳定 PVA-LiCl-甘油水凝胶板优异的吸水性和光热蒸发性能,研究团队又开发了一种米级 AWHW,其尺寸为 0.56 米(长)×0.4 米(高)×0.12 米(宽),配备一块 0.47 米(长)×0.34 米(高)×1 毫米(厚)的吸附板。然后,他们将该系统于 2023 年 11 月初在美国加州死亡谷进行测试。

通过动态蒸气吸附(DVS,dynamic vapour sorption)分析得出的 20% 相对湿度下的吸水等温线以及原位测量,均证实了研究团队的水凝胶在极端干旱条件下具有卓越的吸水能力。

如下图所示,设备按昼夜循环运行,夜间吸水,白天解吸水分。值得注意的是,2023 年 11 月 2 日晚在死亡谷,吸附板收获了 106.0 克水,较其干重增加了 81.8%。


(来源:Nature Water)

相对湿度和温度曲线如下图所示,其中相对湿度范围为 18% 至 24%,这表明湿度非常低。从上午 7:30 到下午约 5:00,量筒中收集到 57.0 毫升水,热效率为 9.3%。太阳通量峰值为 471.5 瓦/平方米,环境温度最高达 32.0℃。


(来源:Nature Water)

利用窗玻璃上的辐射冷却涂层和铝制底座的强大散热能力,AWHW 腔体将内部温度维持在 41.6°C 以下。尽管 PVA-LiCl-甘油水凝胶在阳光下的温度峰值达到 78.6°C,但这仍能确保水蒸气在窗表面持续冷凝。据他们所知,这是吸湿水凝胶在如此低的相对湿度下产水的首次实际验证。

而在实际应用场景中,气象条件会呈现季节性变化特征。例如,在摩洛哥南部的瓦尔扎扎特,相对湿度跨越很大,比如当地在 2021 年 12 月的湿度为 97.0%,在 2022 年 7 月的湿度为 7.3%。这种变化凸显了太阳能大气集水技术需要适应不同气候的必要性。

为此,研究团队在环境模拟舱中设置了 88% 的相对湿度条件进行夜间水分吸附实验,并于 2023 年 11 月 6 日在死亡谷开展了日间光热蒸发测试。结果发现,吸附板捕获了 211.2 克水,重量增加了 163.0%,白天收集到 161.5 毫升水,热效率为 26.4%。


(来源:Nature Water)

这一结果表明,在相对湿度较高的情况下,AWHW 的水产量较高,超过了所有其他被动式太阳能大气集水装置。因此,AWHW 可以在 18%-90% 的宽泛相对湿度范围内高效集水,从而实现全年适用性。

这也说明 AWHW 在长期低湿度的物理性缺水地区具有应用潜力,同时也能缓解印度北部等高湿度地区的经济性缺水问题,从而将其适用性扩展到干旱地区之外。

除了在死亡谷进行实地测试之外,研究团队还于 2023 年 7 月在美国麻省剑桥市的一个城市环境中测试了 AWHW,那里的相对湿度更高。

期间,研究团队构建了一个尺寸为 28.0 厘米(长)×6.4 厘米(宽)×31.5 厘米(高)的 AWHW 装置,其吸附面板厚度经吸附/脱附动力学和水分捕获能力优化后确定为 1.8 毫米。

值得注意的是,尽管采用了无孔材料设计,但吸附动力学依然足够快,使吸附面板在 10 小时的吸水期内接近稳定状态。基于 AWHW 的昼夜工作循环机制,它在 2023 年 7 月 28 日产出 56.5 毫升水,实现了 1.26 升/平方米/天的极高面积产水率,这一性能超越了此前最先进的被动式大气水收集器。

与此同时,单位面积产水速率会根据当地环境条件而变化,包括夜间相对湿度、太阳辐照度、环境温度和风速。数据显示,AWHW 表现出卓越的气候适应性和可扩展性,使其能够轻松实现定制以便满足特定的当地环境条件。

总之,AWHW 代表了一种开创性的、安全、可扩展的大气集水解决方案,为日常水生产和气候适应性设定了基准,在为水资源最紧张的地区提供实用、可扩展、安全和可持续的分散式供水解决方案上取得了进步。当然,这些水量远不足以完全满足人们的饮水需求,因此研究团队认为在缺水地区部署一系列垂直排列的水凝胶面板,或许能产出更大量的水,从而足以支撑一整个家庭的用水需求。

参考资料:

Liu, C., Yan, XY., Li, S.et al. A metre-scale vertical origami hydrogel panel for atmospheric water harvesting in Death Valley.Nat Water(2025). https://doi.org/10.1038/s44221-025-00447-2

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
商务部新闻发言人就荷经济大臣卡雷曼斯就安世半导体问题表态答记者问

商务部新闻发言人就荷经济大臣卡雷曼斯就安世半导体问题表态答记者问

界面新闻
2025-11-14 21:42:06
特朗普终于低头了!只因他发现:中国已和二战的美国一样强大

特朗普终于低头了!只因他发现:中国已和二战的美国一样强大

boss外传
2025-11-14 16:00:03
欧美彻底傻眼!中国北重耗时三年,成功攻克世界难题“360工程”!

欧美彻底傻眼!中国北重耗时三年,成功攻克世界难题“360工程”!

趣文说娱
2025-11-14 15:39:41
实力差距越拉越大,日本为什么不怕中国?

实力差距越拉越大,日本为什么不怕中国?

芳芳历史烩
2025-11-15 19:45:47
神舟飞船外层防热玻璃被撞裂! 俄罗斯联盟飞船的教训: 中国非常理智

神舟飞船外层防热玻璃被撞裂! 俄罗斯联盟飞船的教训: 中国非常理智

普陀动物世界
2025-11-15 03:27:38
解放军进台海,不到24小时,马英九开始追责,郑丽文摊牌两岸关系

解放军进台海,不到24小时,马英九开始追责,郑丽文摊牌两岸关系

云上乌托邦
2025-11-11 17:03:48
美媒公开中国轰炸计划:日本敢走错半步,我们万枚导弹雨包大饺子

美媒公开中国轰炸计划:日本敢走错半步,我们万枚导弹雨包大饺子

蜉蝣说
2025-11-15 19:06:35
泰国财长宣布:将对低价进口商品征收10%的关税!发生了什么?

泰国财长宣布:将对低价进口商品征收10%的关税!发生了什么?

王爷说图表
2025-11-14 22:54:43
李沁年轻时腿很肥嫩

李沁年轻时腿很肥嫩

阿废冷眼观察所
2025-11-15 12:10:49
全运会跳水赛落幕!诞生3个赢家2个输家,全红婵、陈芋汐位列其中

全运会跳水赛落幕!诞生3个赢家2个输家,全红婵、陈芋汐位列其中

千言娱乐记
2025-11-15 07:59:38
王永康书记,回西安吧!

王永康书记,回西安吧!

贞观108坊
2025-11-15 10:46:01
奋斗后发现大麻烦,网友:只要努力就必然负债!

奋斗后发现大麻烦,网友:只要努力就必然负债!

特约前排观众
2025-11-15 00:05:08
魏建军:炒作电动车的资本已经走了

魏建军:炒作电动车的资本已经走了

大象新闻
2025-11-15 09:30:21
日本开始备战:防卫省官员叫嚣优先击沉福建舰,主流媒体配合疯狂

日本开始备战:防卫省官员叫嚣优先击沉福建舰,主流媒体配合疯狂

李子橱
2025-11-12 07:32:54
A股一天最佳买入时间:这3个时段,新手也能更从容

A股一天最佳买入时间:这3个时段,新手也能更从容

小白鸽财经
2025-11-15 09:01:41
中国网球假球丑闻!三名中国球员因涉嫌操纵比赛遭ITIA禁赛罚款!

中国网球假球丑闻!三名中国球员因涉嫌操纵比赛遭ITIA禁赛罚款!

网球之家
2025-11-15 12:59:59
2-1,张玉宁连续3场破门,把状态延续到决赛,国安2主1客力争全胜

2-1,张玉宁连续3场破门,把状态延续到决赛,国安2主1客力争全胜

替补席看球
2025-11-15 07:10:22
网传新娘婚礼当天被揭发出轨丑闻,现场画面流出,不雅内幕曝光

网传新娘婚礼当天被揭发出轨丑闻,现场画面流出,不雅内幕曝光

可爱的罗
2025-11-15 17:05:19
这张海报,让日本人心里不是滋味

这张海报,让日本人心里不是滋味

陆弃
2025-11-15 08:25:03
尼日尔撕毁4亿美元合同,驱逐中国高管,我方暗藏后手,给它狠狠教训

尼日尔撕毁4亿美元合同,驱逐中国高管,我方暗藏后手,给它狠狠教训

诡谲怪谈
2025-04-30 23:32:55
2025-11-15 21:43:00
DeepTech深科技 incentive-icons
DeepTech深科技
麻省理工科技评论独家合作
15862文章数 514303关注度
往期回顾 全部

科技要闻

撕掉流量外衣,小米还剩什么?

头条要闻

高市对华挑衅后日本同时被四国痛批 特朗普划清界限

头条要闻

高市对华挑衅后日本同时被四国痛批 特朗普划清界限

体育要闻

樊振东和他的尖子班 勇闯地表最强乒乓球赛

娱乐要闻

钟嘉欣婚变风波升级!被骗婚?

财经要闻

小米之“惑”

汽车要闻

"冰彩沙"全配齐 红旗HS6 PHEV预售17.88万起

态度原创

健康
本地
游戏
时尚
公开课

金振口服液助力科学应对呼吸道疾病

本地新闻

沈阳都市圈“冷资源”点燃“热联动” “组团”北上“圈粉”哈尔滨

《超英派遣中心》IGN 9分:第二季还要等多久出?

有品味的中年女人,穿衣都有4个共同点,看看你掌握了几个

公开课

李玫瑾:为什么性格比能力更重要?

无障碍浏览 进入关怀版