网易首页 > 网易号 > 正文 申请入驻

揭开矩阵分解的神秘面纱——特征分解,奇异值分解,伪逆矩阵

0
分享至


在这篇文章中,我将讨论以下内容。

  • 特征分解
  • 奇异值分解
  • 伪逆矩阵

这三个方面是相互关联的。

一旦我们知道特征分解原理是什么,我们就能理解奇异值分解的原理。一旦我们知道奇异值分解,我们就能理解伪逆矩阵。

我们按顺序讨论以下几个方面。

  • 方形矩阵(方阵)
  • 特征值和特征向量
  • 对称矩阵
  • 特征分解
  • 正交矩阵
  • 奇异值分解
  • 伪逆矩阵

方形矩阵

特征分解只对方形矩阵有效。让我们看看什么是正方形矩阵。在方形矩阵中,行数和列数是一样的。比如说:

这很简单。我们继续讨论特征值和特征向量的概念。

特征值和特征向量

当一个正方形矩阵A和一个向量x有如下关系。

我们称λ为特征值,向量x为特征向量。

以上意味着向量x与矩阵A相乘的结果与向量x与标量值λ相乘的结果相同。

为了找到具有特征值和特征向量的条件,我们把方程左边的东西都移动。

为了使矢量x不为零,(A- λI)的逆矩阵应该不存在。换句话说,(A-λI)的行列式需要为零。

让我们以2x2的正方形矩阵为例来计算行列式:

所以,(A - λI)是:

然后我们计算行列式(我们希望它是零)。

因此,λ不是1就是5。

我们来定义特征向量如下:

我们有如下的特征值和特征向量的方程式。

我们可以计算出λ=1的特征向量x,如下所示:

为了满足上述条件,x1和x2是:

尽管t可以是任何值,但我们通常会使L2范数(向量各元素的平方和然后求平方根为1,否则就会有无限多的可能解:

特征值λ=1的特征向量是:

或:

它们是一样的,只是一个向量的方向与另一个相反。所以,我就选择第一个作为λ=1的特征向量。

让我们确认一下这是否符合预期:

我们可以用同样的方法求解λ=5的情况:

对于3×3或更大的矩阵,手动计算太繁琐了。我们可以用NumPy写一个python脚本来完成。

下面是输出结果。

我们可以确认它们是否正确。

下面是输出结果。

对称矩阵

对称矩阵的特征向量是相互正交的。让我们在这里证明一下。

假设λ1和λ2(λ1≠λ2)是特征值,x1和x2是相应的特征向量。

因此:

然而,λ1 ≠ λ2。因此:

因此,对称矩阵的特征向量是相互正交的。现在我们准备讨论一下特征分解的原理。

特征分解

利用特征值和特征向量,我们可以将一个正方形矩阵A分解如下。

Q是一个矩阵,其列中有特征向量:

是大写的lambda,是一个对角矩阵,其对角线元素是特征值:

我们将特征值按降序排列,以使对角矩阵Λ唯一。

为了证明这种特征分解是可能的,我们稍微调整方程:

而我们将证明AQ=QΛ为真。

换句话说,AQ等同于矩阵Q内的每个特征向量乘以相应的特征值。

因此,我们已经证明了特征分解是可能的。让我们用Numpy试试特征分解。

下面是输出结果:

正交矩阵

如前所述,当矩阵A是对称的,矩阵Q中的特征向量是相互正交的。

当我们也使所有特征向量的L2范数为1(正交)时,我们称Q为正交矩阵。

当Q是一个正交矩阵时:

同样地:

因此:

上述事实在我们讨论奇异值分解时将会有所帮助。

让我们用Numpy计算QΛQ^T。

下面是输出结果:

另外,让我们确定一下Q是一个正交矩阵。

下面是输出结果:

这里我们看到了数值计算的局限性。非对角线元素应该是0,但相反,其中一些元素是非常小的值。

所以,到目前为止,我们处理的是方阵,因为特征分解只对方形矩阵有效。接下来,我们将看到适用于非方形矩阵的奇异值分解。

奇异值分解

奇异值分解对任何矩阵都有效,甚至适用于非方阵。

假设矩阵A是m×n(m≠n),我们仍然可以将矩阵A分解如下。

  • U是一个正交矩阵(m×m)。
  • Σ是一个对角线矩阵(m×n)。
  • V是一个正交矩阵(n×n)。

这看起来太抽象了,可视化有助于我们理解。

Σ有如下结构。左上角部分是一个对角线矩阵,对角线元素中有奇异值(后面会详细介绍)。Σ的其他元素都是零。

我们把奇异值按降序排列。

奇异值的数量与矩阵A的秩相同,也就是独立列向量的数量。

那么,我们如何创建这样一个分解呢?

主要的想法是,我们做一个如下的方形矩阵。


我们可以选择其中之一,但使用元素较少的那一个比较容易。例如,如果矩阵A是100×10,000。AA^T是100×100,而A^TA是10,000×10,000。所以,我会选择AA^T。

假设我们用AA^T对矩阵A进行奇异值分解。

其中:

是一个对角线矩阵(m×m)。这些值是AA^T的特征值,因为我们对AA^T进行了如下的特征分解。

矩阵U中的列向量是特征向量,因为:

换句话说,如果我们能对AA^T进行特征分解,我们就能计算出U和对角线的σ,然后我们就能计算出V。

我们可以考虑用A^TA进行同样的计算:

其中

是一个对角线矩阵(n×n)。这些值是特征值,因为我们对A^TA进行了如下的特征分解:

矩阵V中的列向量是特征向量,因为:

换句话说,如果我们能对A^TA进行特征分解,我们就能计算出V和对角线的Σ,然后我们就能计算出U。

因此,如果我们对AA^T或A^TA进行特征分解,我们就可以进行奇异值分解。

同样,我们应该选择AA^T或A^TA中较小的一个。

让我们用Numpy试试奇异值分解。

下面是输出结果:

让我们对矩阵Σ进行如下设置。

下面是输出结果。

现在,我们可以确认=ΣT。

下面是输出结果。

现在我们知道了奇异值分解,就可以准备研究伪逆矩阵了。

伪逆矩阵

逆矩阵并不总是存在,即使是方阵。然而,对于非正方形矩阵,存在一个伪逆矩阵,也叫摩尔-彭罗斯逆矩阵。

例如,矩阵A是m×n。

使用伪逆矩阵A^+,我们可以进行以下转换。

我们定义伪逆矩阵A^+为:

V和U来自奇异值分解。

我们通过转置Σ和所有对角元素的逆得到D^+。假设Σ的定义如下:

那么D+的定义如下:

现在,我们可以看到A^+A的原理:

以同样的方式,AA^+ = I。

综上所述,如果我们能够对矩阵A进行奇异值分解,我们就可以通过VD^+UT来计算A^+,这是一个A的伪逆矩阵。

让我们用Numpy试试伪逆矩阵吧。

下面是输出结果:

想了解更多精彩内容,快来关注老胡说科学

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
佘智江被抓,牵出赵薇前夫黄有龙和妙瓦底诈骗的瓜,真相太炸裂

佘智江被抓,牵出赵薇前夫黄有龙和妙瓦底诈骗的瓜,真相太炸裂

吃瓜局
2025-11-13 20:50:11
里子面子都没了!邹市明赔光两亿后,冉莹颖亲手撕碎他最后的体面

里子面子都没了!邹市明赔光两亿后,冉莹颖亲手撕碎他最后的体面

枫尘余往逝
2025-11-11 02:03:42
全运会男子50米蛙泳:覃海洋犯规成绩被取消,郑英昊脱颖而出摘金

全运会男子50米蛙泳:覃海洋犯规成绩被取消,郑英昊脱颖而出摘金

全景体育V
2025-11-13 20:07:30
24GB+2TB ,华为Mate80Pro+ 大升级,性能很炸裂啊

24GB+2TB ,华为Mate80Pro+ 大升级,性能很炸裂啊

科技堡垒
2025-11-13 12:13:45
缅北KK园区头目佘智江被押解回国:登机前微笑,下机时腿软

缅北KK园区头目佘智江被押解回国:登机前微笑,下机时腿软

极目新闻
2025-11-13 19:58:52
11月13日俄乌最新:壮士断腕

11月13日俄乌最新:壮士断腕

西楼饮月
2025-11-13 18:12:19
离婚1年后,浙江29岁CEO现身相亲市场,被吐槽惨了!公司年营业额过亿

离婚1年后,浙江29岁CEO现身相亲市场,被吐槽惨了!公司年营业额过亿

鲁中晨报
2025-11-13 20:27:06
北京48小时内降温11℃,大风,降雪要来了!

北京48小时内降温11℃,大风,降雪要来了!

鲁中晨报
2025-11-13 18:55:06
外资重启“大撤退”?

外资重启“大撤退”?

美第奇效应
2025-11-13 01:05:51
狗主人被反杀妻子后悔闯入对方家中?果然是打不过才爱和平

狗主人被反杀妻子后悔闯入对方家中?果然是打不过才爱和平

姬鹏
2025-11-13 17:09:41
马云全面高调杀回来了

马云全面高调杀回来了

华尔街见闻官方
2025-11-12 21:19:17
被取消成绩!覃海洋:正常拿金牌肯定没问题 犯规后在水里都笑了

被取消成绩!覃海洋:正常拿金牌肯定没问题 犯规后在水里都笑了

风过乡
2025-11-13 21:17:47
日本民众82%支持涉台武力表态 中日军力对决风险下的亚太局势变局

日本民众82%支持涉台武力表态 中日军力对决风险下的亚太局势变局

行者聊官
2025-11-12 16:59:14
全运会乒乓:女单4强名单出炉,国乒2大主力出局,陈梦超级逆转

全运会乒乓:女单4强名单出炉,国乒2大主力出局,陈梦超级逆转

知轩体育
2025-11-13 14:56:52
约基奇55+12+6掘金击沉快船6连胜,哈登23+8+5孤掌难鸣

约基奇55+12+6掘金击沉快船6连胜,哈登23+8+5孤掌难鸣

湖人崛起
2025-11-13 13:58:29
狗咬人引发命案律师透露新进展:狗主人的妹夫重伤,属于正当防卫

狗咬人引发命案律师透露新进展:狗主人的妹夫重伤,属于正当防卫

汉史趣闻
2025-11-13 15:26:25
中国有权在日本驻军,高市早苗闯了大祸,日方意识到大事不妙!

中国有权在日本驻军,高市早苗闯了大祸,日方意识到大事不妙!

流史岁月
2025-11-13 10:36:07
丈夫结扎9个月后,妻子又怀孕了!医院:责任不全在我

丈夫结扎9个月后,妻子又怀孕了!医院:责任不全在我

半岛晨报
2025-11-12 20:40:15
派出所副所长被控徇私枉法:当执法者站上被告席,一桩足浴案引发的职责之问

派出所副所长被控徇私枉法:当执法者站上被告席,一桩足浴案引发的职责之问

极目新闻
2025-11-13 20:10:09
随着王楚钦4-2林高远,全运男单4强出炉!大概率以下2人会师决赛

随着王楚钦4-2林高远,全运男单4强出炉!大概率以下2人会师决赛

小火箭爱体育
2025-11-13 20:00:10
2025-11-14 00:19:00
老胡说科学 incentive-icons
老胡说科学
科学如此美妙,我想让你知道
1229文章数 33543关注度
往期回顾 全部

教育要闻

打压式的教育究竟有多窒息?爸妈的理解,是治愈孩子最好的良药

头条要闻

美方回应高市早苗“台湾有事”言论 中方表态

头条要闻

美方回应高市早苗“台湾有事”言论 中方表态

体育要闻

跟豪门传了十年绯闻,他却偏要“择一队终老”

娱乐要闻

王鹤棣孟子义真要搭?

财经要闻

源峰25亿赌局!汉堡王中国"卖身"求生

科技要闻

月产能突破百万片,中芯国际Q3净利增43.1%

汽车要闻

具备高阶辅助驾驶功能 欧拉5预售价10.98万起

态度原创

游戏
健康
手机
数码
房产

跳票半年月多花六千万美元?GTA6打磨品质成本超高

血液科专家揭秘白血病七大误区

手机要闻

华为Nova15系列:2.5D直屏+非全系金属中框,12 月不上线也等!

数码要闻

英特尔 XeSS SDK 升级至 2.1.1 版本,Meteor Lake 也能用帧生成

房产要闻

8200元/㎡!海口宝龙城,彻底杀疯了!

无障碍浏览 进入关怀版