网易首页 > 网易号 > 正文 申请入驻

揭开矩阵分解的神秘面纱——特征分解,奇异值分解,伪逆矩阵

0
分享至


在这篇文章中,我将讨论以下内容。

  • 特征分解
  • 奇异值分解
  • 伪逆矩阵

这三个方面是相互关联的。

一旦我们知道特征分解原理是什么,我们就能理解奇异值分解的原理。一旦我们知道奇异值分解,我们就能理解伪逆矩阵。

我们按顺序讨论以下几个方面。

  • 方形矩阵(方阵)
  • 特征值和特征向量
  • 对称矩阵
  • 特征分解
  • 正交矩阵
  • 奇异值分解
  • 伪逆矩阵

方形矩阵

特征分解只对方形矩阵有效。让我们看看什么是正方形矩阵。在方形矩阵中,行数和列数是一样的。比如说:

这很简单。我们继续讨论特征值和特征向量的概念。

特征值和特征向量

当一个正方形矩阵A和一个向量x有如下关系。

我们称λ为特征值,向量x为特征向量。

以上意味着向量x与矩阵A相乘的结果与向量x与标量值λ相乘的结果相同。

为了找到具有特征值和特征向量的条件,我们把方程左边的东西都移动。

为了使矢量x不为零,(A- λI)的逆矩阵应该不存在。换句话说,(A-λI)的行列式需要为零。

让我们以2x2的正方形矩阵为例来计算行列式:

所以,(A - λI)是:

然后我们计算行列式(我们希望它是零)。

因此,λ不是1就是5。

我们来定义特征向量如下:

我们有如下的特征值和特征向量的方程式。

我们可以计算出λ=1的特征向量x,如下所示:

为了满足上述条件,x1和x2是:

尽管t可以是任何值,但我们通常会使L2范数(向量各元素的平方和然后求平方根为1,否则就会有无限多的可能解:

特征值λ=1的特征向量是:

或:

它们是一样的,只是一个向量的方向与另一个相反。所以,我就选择第一个作为λ=1的特征向量。

让我们确认一下这是否符合预期:

我们可以用同样的方法求解λ=5的情况:

对于3×3或更大的矩阵,手动计算太繁琐了。我们可以用NumPy写一个python脚本来完成。

下面是输出结果。

我们可以确认它们是否正确。

下面是输出结果。

对称矩阵

对称矩阵的特征向量是相互正交的。让我们在这里证明一下。

假设λ1和λ2(λ1≠λ2)是特征值,x1和x2是相应的特征向量。

因此:

然而,λ1 ≠ λ2。因此:

因此,对称矩阵的特征向量是相互正交的。现在我们准备讨论一下特征分解的原理。

特征分解

利用特征值和特征向量,我们可以将一个正方形矩阵A分解如下。

Q是一个矩阵,其列中有特征向量:

是大写的lambda,是一个对角矩阵,其对角线元素是特征值:

我们将特征值按降序排列,以使对角矩阵Λ唯一。

为了证明这种特征分解是可能的,我们稍微调整方程:

而我们将证明AQ=QΛ为真。

换句话说,AQ等同于矩阵Q内的每个特征向量乘以相应的特征值。

因此,我们已经证明了特征分解是可能的。让我们用Numpy试试特征分解。

下面是输出结果:

正交矩阵

如前所述,当矩阵A是对称的,矩阵Q中的特征向量是相互正交的。

当我们也使所有特征向量的L2范数为1(正交)时,我们称Q为正交矩阵。

当Q是一个正交矩阵时:

同样地:

因此:

上述事实在我们讨论奇异值分解时将会有所帮助。

让我们用Numpy计算QΛQ^T。

下面是输出结果:

另外,让我们确定一下Q是一个正交矩阵。

下面是输出结果:

这里我们看到了数值计算的局限性。非对角线元素应该是0,但相反,其中一些元素是非常小的值。

所以,到目前为止,我们处理的是方阵,因为特征分解只对方形矩阵有效。接下来,我们将看到适用于非方形矩阵的奇异值分解。

奇异值分解

奇异值分解对任何矩阵都有效,甚至适用于非方阵。

假设矩阵A是m×n(m≠n),我们仍然可以将矩阵A分解如下。

  • U是一个正交矩阵(m×m)。
  • Σ是一个对角线矩阵(m×n)。
  • V是一个正交矩阵(n×n)。

这看起来太抽象了,可视化有助于我们理解。

Σ有如下结构。左上角部分是一个对角线矩阵,对角线元素中有奇异值(后面会详细介绍)。Σ的其他元素都是零。

我们把奇异值按降序排列。

奇异值的数量与矩阵A的秩相同,也就是独立列向量的数量。

那么,我们如何创建这样一个分解呢?

主要的想法是,我们做一个如下的方形矩阵。


我们可以选择其中之一,但使用元素较少的那一个比较容易。例如,如果矩阵A是100×10,000。AA^T是100×100,而A^TA是10,000×10,000。所以,我会选择AA^T。

假设我们用AA^T对矩阵A进行奇异值分解。

其中:

是一个对角线矩阵(m×m)。这些值是AA^T的特征值,因为我们对AA^T进行了如下的特征分解。

矩阵U中的列向量是特征向量,因为:

换句话说,如果我们能对AA^T进行特征分解,我们就能计算出U和对角线的σ,然后我们就能计算出V。

我们可以考虑用A^TA进行同样的计算:

其中

是一个对角线矩阵(n×n)。这些值是特征值,因为我们对A^TA进行了如下的特征分解:

矩阵V中的列向量是特征向量,因为:

换句话说,如果我们能对A^TA进行特征分解,我们就能计算出V和对角线的Σ,然后我们就能计算出U。

因此,如果我们对AA^T或A^TA进行特征分解,我们就可以进行奇异值分解。

同样,我们应该选择AA^T或A^TA中较小的一个。

让我们用Numpy试试奇异值分解。

下面是输出结果:

让我们对矩阵Σ进行如下设置。

下面是输出结果。

现在,我们可以确认=ΣT。

下面是输出结果。

现在我们知道了奇异值分解,就可以准备研究伪逆矩阵了。

伪逆矩阵

逆矩阵并不总是存在,即使是方阵。然而,对于非正方形矩阵,存在一个伪逆矩阵,也叫摩尔-彭罗斯逆矩阵。

例如,矩阵A是m×n。

使用伪逆矩阵A^+,我们可以进行以下转换。

我们定义伪逆矩阵A^+为:

V和U来自奇异值分解。

我们通过转置Σ和所有对角元素的逆得到D^+。假设Σ的定义如下:

那么D+的定义如下:

现在,我们可以看到A^+A的原理:

以同样的方式,AA^+ = I。

综上所述,如果我们能够对矩阵A进行奇异值分解,我们就可以通过VD^+UT来计算A^+,这是一个A的伪逆矩阵。

让我们用Numpy试试伪逆矩阵吧。

下面是输出结果:

想了解更多精彩内容,快来关注老胡说科学

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
未婚夫坐坏霉霉椅子有多慌,网友:硬汉秒变小怂包

未婚夫坐坏霉霉椅子有多慌,网友:硬汉秒变小怂包

韩小娱
2026-02-05 08:14:44
S家洗白失败!韩国综艺锤了小S忽视姐姐病情,推卸责任甩锅给大S

S家洗白失败!韩国综艺锤了小S忽视姐姐病情,推卸责任甩锅给大S

萌神木木
2026-02-04 19:05:07
尾盘操作思路:A股持续调整怎么办?一句话直接告诉你!

尾盘操作思路:A股持续调整怎么办?一句话直接告诉你!

龙行天下虎
2026-02-05 14:45:01
宋小宝竟然变帅了,自曝动600多刀整容!五官标致,像20多岁小伙

宋小宝竟然变帅了,自曝动600多刀整容!五官标致,像20多岁小伙

乐悠悠娱乐
2026-02-03 12:31:36
上海女子怀孕5个月查出癌症,婆婆凑了400万为她治病,不料,她怕伤到胎儿,坚持先要生下孩子,结局令人泪目

上海女子怀孕5个月查出癌症,婆婆凑了400万为她治病,不料,她怕伤到胎儿,坚持先要生下孩子,结局令人泪目

LULU生活家
2026-02-04 18:45:06
人的寿命越长越好吗?新发现:其实63岁至68岁的人是最幸福的!

人的寿命越长越好吗?新发现:其实63岁至68岁的人是最幸福的!

普陀动物世界
2026-02-04 15:46:03
太意外了!苹果突然发布 iOS 26.3 新系统

太意外了!苹果突然发布 iOS 26.3 新系统

XCiOS俱乐部
2026-02-05 09:02:13
明明是戏子,却把自己当大腕,论"耍大牌",这5位明星真够丢脸

明明是戏子,却把自己当大腕,论"耍大牌",这5位明星真够丢脸

小熊侃史
2026-01-25 07:55:06
深度剖析章莹颖事件,曝光作案细节,作案手法令人发指

深度剖析章莹颖事件,曝光作案细节,作案手法令人发指

谈史论天地
2026-01-17 14:20:03
绿卡也不行了!3月1日起,将被排除在联邦贷款之外

绿卡也不行了!3月1日起,将被排除在联邦贷款之外

华人生活网
2026-02-05 06:11:29
C罗遭糊弄 利雅得胜利签新援给9号 新月签本泽马送0球0助前锋

C罗遭糊弄 利雅得胜利签新援给9号 新月签本泽马送0球0助前锋

智道足球
2026-02-05 10:33:18
听风的蚕掉粉1700万,说军事却踩了红线,他到底说了啥?

听风的蚕掉粉1700万,说军事却踩了红线,他到底说了啥?

草莓解说体育
2026-02-05 11:19:23
“爱理财的小羊”蚂蚁财富账号搜索不显示

“爱理财的小羊”蚂蚁财富账号搜索不显示

财联社
2026-02-05 10:12:03
70枚导弹全中,不到72小时,美军发起行动,俄外长撂下一句狠话

70枚导弹全中,不到72小时,美军发起行动,俄外长撂下一句狠话

奇奇圈
2026-02-05 14:13:18
家有这4款“老酒”要藏好!每瓶价格不低于茅台,喝了就亏大了

家有这4款“老酒”要藏好!每瓶价格不低于茅台,喝了就亏大了

涛哥美食汇
2026-02-05 08:40:31
3-2逆转!2-1绝杀!国王杯4强诞生3席,巴萨争冠,皇马早早出局

3-2逆转!2-1绝杀!国王杯4强诞生3席,巴萨争冠,皇马早早出局

足球狗说
2026-02-05 06:44:43
VIVO新机突然曝光:2月5日,这把我看懵了

VIVO新机突然曝光:2月5日,这把我看懵了

手机讲坛
2026-02-05 12:03:18
她是中国年纪最小的军官,6岁被特招入伍,皆因身怀一项特殊技能

她是中国年纪最小的军官,6岁被特招入伍,皆因身怀一项特殊技能

寄史言志
2026-01-28 17:52:07
告别“卡脖子”!华为Mate90重要配置曝光,革命性技术

告别“卡脖子”!华为Mate90重要配置曝光,革命性技术

泡泡网
2026-02-04 18:24:05
生母失联40年,拍戏挣钱替继母养大孩子,如今他也有家庭美满幸福

生母失联40年,拍戏挣钱替继母养大孩子,如今他也有家庭美满幸福

查尔菲的笔记
2026-02-02 18:23:01
2026-02-05 15:08:49
老胡说科学 incentive-icons
老胡说科学
科学如此美妙,我想让你知道
1229文章数 33541关注度
往期回顾 全部

教育要闻

重磅格林尼治大学和肯特大学合并获批!中国留英市场两极分化严重

头条要闻

媒体:特朗普急于将爱泼斯坦案翻篇 千方百计转移视线

头条要闻

媒体:特朗普急于将爱泼斯坦案翻篇 千方百计转移视线

体育要闻

奇才:我学生……独行侠:成交!

娱乐要闻

谢娜明年开演唱会:带老歌出来见见人

财经要闻

黄金,出现拐点

科技要闻

微信给马化腾浇了“一盆冷水”

汽车要闻

一切交给XWD 捷途旅行者C-DM也能轻松刷冰锅

态度原创

数码
本地
亲子
健康
家居

数码要闻

Intel锐炫B390集显《心灵杀手2》实测:与Xbox Series S性能相当

本地新闻

围观了北京第一届黑色羽绒服大赛,我笑疯了

亲子要闻

筑牢儿童皮肤防线,深圳科普书《儿童成长中的皮肤烦恼》发布

耳石症分类型,症状大不同

家居要闻

简雅序章 自然且闲适

无障碍浏览 进入关怀版