网易首页
63. Minimizing a Function Step by Step - 2
2023年9月23日 1486观看
艾伦·爱德曼和茱莉亚
大学课程 / 外语
https://ocw.mit.edu/18-065S18 MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018 Professor Strang describes the four topics of the course: Linear Algebra, Deep Learning, Optimization, and Statistics.
共102集
11.5万人观看
1
Course Introduction of 18.065 by Professor Strang
07:03
2
The Column Space of A Contains All Vectors Ax - 1
17:27
3
The Column Space of A Contains All Vectors Ax - 2
17:28
4
The Column Space of A Contains All Vectors Ax - 3
17:23
5
Multiplying and Factoring Matrices - 1
16:11
6
Multiplying and Factoring Matrices - 2
16:14
7
Multiplying and Factoring Matrices - 3
16:03
8
Orthonormal Columns in Q Give Q'Q = I - 1
16:31
9
Orthonormal Columns in Q Give Q'Q = I - 2
16:38
10
Orthonormal Columns in Q Give Q'Q = I - 3
16:28
11
Eigenvalues and Eigenvectors - 1
16:21
12
Eigenvalues and Eigenvectors - 2
16:22
13
Eigenvalues and Eigenvectors - 3
16:21
14
Positive Definite and Semidefinite Matrices - 1
15:12
15
Positive Definite and Semidefinite Matrices - 2
15:19
16
Positive Definite and Semidefinite Matrices - 3
15:03
17
Singular Value Decomposition (SVD) - 1
17:54
18
Singular Value Decomposition (SVD) - 2
17:59
19
Singular Value Decomposition (SVD) - 3
17:51
20
Eckart-Young - The Closest Rank k Matrix to A - 1
15:48
21
Eckart-Young - The Closest Rank k Matrix to A - 2
15:49
22
Eckart-Young - The Closest Rank k Matrix to A - 3
15:46
23
Norms of Vectors and Matrices - 1
16:30
24
Norms of Vectors and Matrices - 2
16:30
25
Norms of Vectors and Matrices - 3
16:26
26
Four Ways to Solve Least Squares Problems - 1
16:40
27
Four Ways to Solve Least Squares Problems - 2
16:41
28
Four Ways to Solve Least Squares Problems - 3
16:32
29
Survey of Difficulties with Ax = b - 1
16:35
30
Survey of Difficulties with Ax = b - 2
16:39
31
Survey of Difficulties with Ax = b - 3
16:27
32
Minimizing _x_ Subject to Ax = b - 1
16:50
33
Minimizing _x_ Subject to Ax = b - 2
16:52
34
Minimizing _x_ Subject to Ax = b - 3
16:46
35
Computing Eigenvalues and Singular Values - 1
16:32
36
Computing Eigenvalues and Singular Values - 2
16:38
37
Computing Eigenvalues and Singular Values - 3
16:29
38
Randomized Matrix Multiplication - 1
17:31
39
Randomized Matrix Multiplication - 2
17:36
40
Randomized Matrix Multiplication - 3
17:29
41
Low Rank Changes in A and Its Inverse - 1
16:54
42
Low Rank Changes in A and Its Inverse - 2
16:55
43
Low Rank Changes in A and Its Inverse - 3
16:49
44
Matrices A(t) Depending on t, Derivative = dA_dt - 1
17:00
45
Matrices A(t) Depending on t, Derivative = dA_dt - 2
17:01
46
Matrices A(t) Depending on t, Derivative = dA_dt - 3
16:54
47
Derivatives of Inverse and Singular Values - 1
14:25
48
Derivatives of Inverse and Singular Values - 2
14:32
49
Derivatives of Inverse and Singular Values - 3
14:25
50
Rapidly Decreasing Singular Values - 1
16:54
51
Rapidly Decreasing Singular Values - 2
16:56
52
Rapidly Decreasing Singular Values - 3
16:52
53
Counting Parameters in SVD, LU, QR, Saddle Points - 1
16:23
54
Counting Parameters in SVD, LU, QR, Saddle Points - 2
16:24
55
Counting Parameters in SVD, LU, QR, Saddle Points - 3
16:16
56
Saddle Points Continued, Maxmin Principle - 1
17:27
57
Saddle Points Continued, Maxmin Principle - 2
17:32
58
Saddle Points Continued, Maxmin Principle - 3
17:27
59
Definitions and Inequalities - 1
18:23
60
Definitions and Inequalities - 2
18:30
61
Definitions and Inequalities - 3
18:19
62
Minimizing a Function Step by Step - 1
17:57
63
Minimizing a Function Step by Step - 2
18:02
64
Minimizing a Function Step by Step - 3
17:50
65
Gradient Descent - Downhill to a Minimum - 1
17:37
66
Gradient Descent - Downhill to a Minimum - 2
17:39
67
Gradient Descent - Downhill to a Minimum - 3
17:36
68
Accelerating Gradient Descent (Use Momentum) - 1
16:23
69
Accelerating Gradient Descent (Use Momentum) - 2
16:23
70
Accelerating Gradient Descent (Use Momentum) - 3
16:23
71
Linear Programming and Two-Person Games - 1
17:54
72
Linear Programming and Two-Person Games - 2
18:00
73
Linear Programming and Two-Person Games - 3
17:52
74
Stochastic Gradient Descent - 1
17:43
75
Stochastic Gradient Descent - 2
17:49
76
Stochastic Gradient Descent - 3
17:37
77
Structure of Neural Nets for Deep Learning - 1
17:48
78
Structure of Neural Nets for Deep Learning - 2
17:54
79
Structure of Neural Nets for Deep Learning - 3
17:47
80
Backpropagation - Find Partial Derivatives - 1
17:35
81
Backpropagation - Find Partial Derivatives - 2
17:35
82
Backpropagation - Find Partial Derivatives - 3
17:36
83
Completing a Rank-One Matrix, Circulants! - 1
16:40
84
Completing a Rank-One Matrix, Circulants! - 2
16:44
85
Completing a Rank-One Matrix, Circulants! - 3
16:34
86
Eigenvectors of Circulant Matrices - Fourier Matrix - 1
17:35
87
Eigenvectors of Circulant Matrices - Fourier Matrix - 2
17:36
88
Eigenvectors of Circulant Matrices - Fourier Matrix - 3
17:28
89
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 1
15:49
90
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 2
15:50
91
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 3
15:43
92
Neural Nets and the Learning Function - 1
18:45
93
Neural Nets and the Learning Function - 2
18:48
94
Neural Nets and the Learning Function - 3
18:44
95
Distance Matrices, Procrustes Problem - 1
14:40
96
Distance Matrices, Procrustes Problem - 3
14:37
97
Finding Clusters in Graphs - 1
11:39
98
Finding Clusters in Graphs - 2
11:40
99
Finding Clusters in Graphs - 3
11:35
100
Alan Edelman and Julia Language - 1
12:46
101
Alan Edelman and Julia Language - 2
12:50
102
Alan Edelman and Julia Language - 3
12:45
相关视频
04:26
宋朝是审美的时代,北宋有两股相反潮流
轻知识
12月前
1113观看
02:15
文学常识:撰写《大医精诚》的是谁?是孙思邈吗?
轻知识
1年前
997观看
04:09
夏朝,真的存在吗?西方学者:中国根本没有五千年历史!
轻知识
1年前
1207观看
第4/4集 · 11:00
魅力诗经:中国人的精神家底(二) - 3
大学课程
2022年9月29日
4109观看
01:16
不听明人言,吃亏是必然,《止学》就是一位明白人写的。 #传统文化 #止学 #好书推荐 #儒家经典
轻知识
1年前
1901观看
第30/178集 · 09:51
《史记》的写人艺术(上) - 3
大学课程
2022年11月25日
3981观看
04:46
在中国的圣贤里面,我最喜欢的是庄子。中国文学中最洒脱、最诗意、最自由的一股清流,源头是庄子。在哲学上...
轻知识
1年前
1146观看
第1/34集 · 1:43:05
【国立台湾大学公开课:中国文学史】序论:何谓文学
大学课程
2014年4月8日
118.5万观看
03:43
通常的西方哲学史以本体论和认识论为标准,对于在这两个领域无专门研究的著作家,便不承认其为哲学家,往往...
轻知识
1年前
2427观看
第15/24集 · 11:51
【南京大学公开课:诗意人生五典型】杜甫(下) - 3
大学课程
2022年8月18日
3270观看
12:22
沈从文《丈夫》:一人靠卖身养全家的女人,揭露了多少男人的无能
轻知识
2021年12月10日
4.3万观看
11:26
分钟读完王小波的《黄金时代》:人活在世上,就是为了忍受摧残
轻知识
2021年12月17日
11.7万观看
21:01
王德峰教授讲解《红楼梦》,说中国文化的精髓英语是翻译不出的!
轻知识
2021年11月15日
8.4万观看
1:01:41
共读《三国演义》第四、五章
轻知识
2022年7月27日
2663观看
12:51
深度解读张爱玲的《色·戒》:假戏真做的人性寓言?还是残酷真实的爱情黑神话?
轻知识
2022年4月29日
10.4万观看
05:33
分钟读完《论“他**”!》:鲁迅和你聊聊“骂人为啥先骂妈”
轻知识
2023年8月8日
5786观看