网易首页
58. Saddle Points Continued, Maxmin Principle - 3
2023年9月23日 1378观看
艾伦·爱德曼和茱莉亚
大学课程 / 外语
https://ocw.mit.edu/18-065S18 MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018 Professor Strang describes the four topics of the course: Linear Algebra, Deep Learning, Optimization, and Statistics.
共102集
11.5万人观看
1
Course Introduction of 18.065 by Professor Strang
07:03
2
The Column Space of A Contains All Vectors Ax - 1
17:27
3
The Column Space of A Contains All Vectors Ax - 2
17:28
4
The Column Space of A Contains All Vectors Ax - 3
17:23
5
Multiplying and Factoring Matrices - 1
16:11
6
Multiplying and Factoring Matrices - 2
16:14
7
Multiplying and Factoring Matrices - 3
16:03
8
Orthonormal Columns in Q Give Q'Q = I - 1
16:31
9
Orthonormal Columns in Q Give Q'Q = I - 2
16:38
10
Orthonormal Columns in Q Give Q'Q = I - 3
16:28
11
Eigenvalues and Eigenvectors - 1
16:21
12
Eigenvalues and Eigenvectors - 2
16:22
13
Eigenvalues and Eigenvectors - 3
16:21
14
Positive Definite and Semidefinite Matrices - 1
15:12
15
Positive Definite and Semidefinite Matrices - 2
15:19
16
Positive Definite and Semidefinite Matrices - 3
15:03
17
Singular Value Decomposition (SVD) - 1
17:54
18
Singular Value Decomposition (SVD) - 2
17:59
19
Singular Value Decomposition (SVD) - 3
17:51
20
Eckart-Young - The Closest Rank k Matrix to A - 1
15:48
21
Eckart-Young - The Closest Rank k Matrix to A - 2
15:49
22
Eckart-Young - The Closest Rank k Matrix to A - 3
15:46
23
Norms of Vectors and Matrices - 1
16:30
24
Norms of Vectors and Matrices - 2
16:30
25
Norms of Vectors and Matrices - 3
16:26
26
Four Ways to Solve Least Squares Problems - 1
16:40
27
Four Ways to Solve Least Squares Problems - 2
16:41
28
Four Ways to Solve Least Squares Problems - 3
16:32
29
Survey of Difficulties with Ax = b - 1
16:35
30
Survey of Difficulties with Ax = b - 2
16:39
31
Survey of Difficulties with Ax = b - 3
16:27
32
Minimizing _x_ Subject to Ax = b - 1
16:50
33
Minimizing _x_ Subject to Ax = b - 2
16:52
34
Minimizing _x_ Subject to Ax = b - 3
16:46
35
Computing Eigenvalues and Singular Values - 1
16:32
36
Computing Eigenvalues and Singular Values - 2
16:38
37
Computing Eigenvalues and Singular Values - 3
16:29
38
Randomized Matrix Multiplication - 1
17:31
39
Randomized Matrix Multiplication - 2
17:36
40
Randomized Matrix Multiplication - 3
17:29
41
Low Rank Changes in A and Its Inverse - 1
16:54
42
Low Rank Changes in A and Its Inverse - 2
16:55
43
Low Rank Changes in A and Its Inverse - 3
16:49
44
Matrices A(t) Depending on t, Derivative = dA_dt - 1
17:00
45
Matrices A(t) Depending on t, Derivative = dA_dt - 2
17:01
46
Matrices A(t) Depending on t, Derivative = dA_dt - 3
16:54
47
Derivatives of Inverse and Singular Values - 1
14:25
48
Derivatives of Inverse and Singular Values - 2
14:32
49
Derivatives of Inverse and Singular Values - 3
14:25
50
Rapidly Decreasing Singular Values - 1
16:54
51
Rapidly Decreasing Singular Values - 2
16:56
52
Rapidly Decreasing Singular Values - 3
16:52
53
Counting Parameters in SVD, LU, QR, Saddle Points - 1
16:23
54
Counting Parameters in SVD, LU, QR, Saddle Points - 2
16:24
55
Counting Parameters in SVD, LU, QR, Saddle Points - 3
16:16
56
Saddle Points Continued, Maxmin Principle - 1
17:27
57
Saddle Points Continued, Maxmin Principle - 2
17:32
58
Saddle Points Continued, Maxmin Principle - 3
17:27
59
Definitions and Inequalities - 1
18:23
60
Definitions and Inequalities - 2
18:30
61
Definitions and Inequalities - 3
18:19
62
Minimizing a Function Step by Step - 1
17:57
63
Minimizing a Function Step by Step - 2
18:02
64
Minimizing a Function Step by Step - 3
17:50
65
Gradient Descent - Downhill to a Minimum - 1
17:37
66
Gradient Descent - Downhill to a Minimum - 2
17:39
67
Gradient Descent - Downhill to a Minimum - 3
17:36
68
Accelerating Gradient Descent (Use Momentum) - 1
16:23
69
Accelerating Gradient Descent (Use Momentum) - 2
16:23
70
Accelerating Gradient Descent (Use Momentum) - 3
16:23
71
Linear Programming and Two-Person Games - 1
17:54
72
Linear Programming and Two-Person Games - 2
18:00
73
Linear Programming and Two-Person Games - 3
17:52
74
Stochastic Gradient Descent - 1
17:43
75
Stochastic Gradient Descent - 2
17:49
76
Stochastic Gradient Descent - 3
17:37
77
Structure of Neural Nets for Deep Learning - 1
17:48
78
Structure of Neural Nets for Deep Learning - 2
17:54
79
Structure of Neural Nets for Deep Learning - 3
17:47
80
Backpropagation - Find Partial Derivatives - 1
17:35
81
Backpropagation - Find Partial Derivatives - 2
17:35
82
Backpropagation - Find Partial Derivatives - 3
17:36
83
Completing a Rank-One Matrix, Circulants! - 1
16:40
84
Completing a Rank-One Matrix, Circulants! - 2
16:44
85
Completing a Rank-One Matrix, Circulants! - 3
16:34
86
Eigenvectors of Circulant Matrices - Fourier Matrix - 1
17:35
87
Eigenvectors of Circulant Matrices - Fourier Matrix - 2
17:36
88
Eigenvectors of Circulant Matrices - Fourier Matrix - 3
17:28
89
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 1
15:49
90
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 2
15:50
91
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 3
15:43
92
Neural Nets and the Learning Function - 1
18:45
93
Neural Nets and the Learning Function - 2
18:48
94
Neural Nets and the Learning Function - 3
18:44
95
Distance Matrices, Procrustes Problem - 1
14:40
96
Distance Matrices, Procrustes Problem - 3
14:37
97
Finding Clusters in Graphs - 1
11:39
98
Finding Clusters in Graphs - 2
11:40
99
Finding Clusters in Graphs - 3
11:35
100
Alan Edelman and Julia Language - 1
12:46
101
Alan Edelman and Julia Language - 2
12:50
102
Alan Edelman and Julia Language - 3
12:45
相关视频
01:42
孩子们多么善于提出既不实用、又无答案的问题呵,这正是哲学问题的典型特点,可惜的是,它们往往被毫无哲学...
轻知识
1年前
4189观看
06:57
时间的本质是什么?是否存在哲学意义上的时间?
轻知识
1年前
4612观看
第29/258集 · 15:16
解说内经“和”学说 - 1
大学课程
2022年11月10日
2万观看
01:13
学习最重要的是反思,而不是反驳
5月前
999观看
02:54
东西方哲学的主观唯心主义
轻知识
11月前
1万观看
10:17
哲学研究的六个领域和三个层次,什么是本体论、唯物论和唯心论?
轻知识
2年前
3661观看
02:04
傅佩荣:唯物论唯心论,哪个更根本?
轻知识
10月前
1万观看
01:35
傅佩荣:哲学千万别这样读,不是害自己吗?一般人读这三本就够了
轻知识
1年前
4681观看
02:19
傅佩荣:西方哲学太难?西哲就三大块
轻知识
12月前
1681观看
07:31
瞧不起哲学?我笑了,我这个笑有点诡异
2022年9月29日
5951观看
第5/17集 · 12:16
什么是当代哲学的终极问题 - 2
大学课程
2022年8月18日
1855观看
第11/21集 · 15:16
【中山大学公开课:逻辑学导引】非形式逻辑导论 - 2
大学课程
2022年8月18日
4838观看
02:40
三分钟哲学思辨,你如何才能确定你是真实存在的?
轻知识
2023年8月8日
3088观看
第6/8集 · 1:52:09
共生之域 Symbiosis
大学课程
2020年8月18日
8411观看
第1/15集 · 13:58
【北京工业大学公开课:科学究竟是什么】科学与非科学 - 1
大学课程
2022年9月6日
8万观看
第5/14集 · 13:08
漫谈艺术思维与方法(四) - 1
大学课程
2022年8月18日
12.8万观看