网易首页 > 网易号 > 正文 申请入驻

Karpathy称赞,从零实现LLaMa3项目爆火,半天1.5k star

0
分享至

机器之心报道

编辑:杜伟、陈萍

项目中代码很多很全,值得细读。

一个月前,Meta 发布了开源大模型 llama3 系列,在多个关键基准测试中优于业界 SOTA 模型,并在代码生成任务上全面领先。

此后,开发者们便开始了本地部署和实现,比如 llama3 的中文实现、llama3 的纯 NumPy 实现等。

十几个小时前,有位名为「Nishant Aklecha」的开发者发布了一个从零开始实现 llama3 的存储库,包括跨多个头的注意力矩阵乘法、位置编码和每个层在内都有非常详细的解释。



该项目得到了大神 Karpathy 的称赞,他表示项目看起来不错,完全展开后,通过模块嵌套和相互调用,可以更容易看到实际的情况。





上传半天的时间,该项目已在 GitHub 上收获了 1.5k 的 star,足可见其含金量。

从零开始实现 llama3

接下来项目作者手把手教你如何从头开始实现 llama3。



项目地址:https://github.com/naklecha/llama3-from-scratch

首先从 Meta 提供的 llama3 模型文件中加载张量。

下载地址:https://llama.meta.com/llama-downloads/



接着是分词器(tokenizer),作者表示没打算自己实现分词器,因而借用了 Andrej Karpathy 的实现方式:

分词器的实现链接:https://github.com/karpathy/minbpe



from pathlib import Pathimport tiktokenfrom tiktoken.load import load_tiktoken_bpeimport torchimport jsonimport matplotlib.pyplot as plttokenizer_path = "Meta-Llama-3-8B/tokenizer.model"special_tokens = [ "", "", "", "", "", "", "", "", "", "", # end of turn ] + [f"" for i in range (5, 256 - 5)] mergeable_ranks = load_tiktoken_bpe (tokenizer_path) tokenizer = tiktoken.Encoding ( name=Path (tokenizer_path).name, pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p {L}\p {N}]?\p {L}+|\p {N}{1,3}| ?[^\s\p {L}\p {N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+", mergeable_ranks=mergeable_ranks, special_tokens={token: len (mergeable_ranks) + i for i, token in enumerate (special_tokens)},)tokenizer.decode (tokenizer.encode ("hello world!"))

'hello world!'

上述步骤完成后,就是读取模型文件了。由于该研究是从头开始实现 llama3,因此代码一次只读取一个张量文件。



model = torch.load ("Meta-Llama-3-8B/consolidated.00.pth")print (json.dumps (list (model.keys ())[:20], indent=4))

[ "tok_embeddings.weight", "layers.0.attention.wq.weight", "layers.0.attention.wk.weight", "layers.0.attention.wv.weight", "layers.0.attention.wo.weight", "layers.0.feed_forward.w1.weight", "layers.0.feed_forward.w3.weight", "layers.0.feed_forward.w2.weight", "layers.0.attention_norm.weight", "layers.0.ffn_norm.weight", "layers.1.attention.wq.weight", "layers.1.attention.wk.weight", "layers.1.attention.wv.weight", "layers.1.attention.wo.weight", "layers.1.feed_forward.w1.weight", "layers.1.feed_forward.w3.weight", "layers.1.feed_forward.w2.weight", "layers.1.attention_norm.weight", "layers.1.ffn_norm.weight", "layers.2.attention.wq.weight"]

with open ("Meta-Llama-3-8B/params.json", "r") as f: config = json.load (f)config

{'dim': 4096, 'n_layers': 32, 'n_heads': 32, 'n_kv_heads': 8, 'vocab_size': 128256, 'multiple_of': 1024, 'ffn_dim_multiplier': 1.3, 'norm_eps': 1e-05, 'rope_theta': 500000.0}

项目作者使用以下配置来推断模型细节:

模型有 32 个 transformer 层;

每个多头注意力块有 32 个头。

dim = config ["dim"]n_layers = config ["n_layers"]n_heads = config ["n_heads"]n_kv_heads = config ["n_kv_heads"]vocab_size = config ["vocab_size"]multiple_of = config ["multiple_of"]ffn_dim_multiplier = config ["ffn_dim_multiplier"]norm_eps = config ["norm_eps"]rope_theta = torch.tensor (config ["rope_theta"])

接下来的操作是将文本装换为 token,这里作者使用的是 tiktoken 库(一个用于 OpenAI 模型的 BPE tokeniser)。



prompt = "the answer to the ultimate question of life, the universe, and everything is"tokens = [128000] + tokenizer.encode (prompt)print (tokens)tokens = torch.tensor (tokens)prompt_split_as_tokens = [tokenizer.decode ([token.item ()]) for token in tokens]print (prompt_split_as_tokens)

[128000, 1820, 4320, 311, 279, 17139, 3488, 315, 2324, 11, 279, 15861, 11, 323, 4395, 374, 220]['', 'the', ' answer', ' to', ' the', ' ultimate', ' question', ' of', ' life', ',', ' the', ' universe', ',', ' and', ' everything', ' is', ' ']

然后将 token 转换为嵌入。



embedding_layer = torch.nn.Embedding (vocab_size, dim)embedding_layer.weight.data.copy_(model ["tok_embeddings.weight"])token_embeddings_unnormalized = embedding_layer (tokens).to (torch.bfloat16)token_embeddings_unnormalized.shape

torch.Size ([17, 4096])

将嵌入进行归一化。该研究使用均方根 RMS 算法进行归一化。不过,在这一步之后,张量形状不会改变,只是值进行了归一化。



# def rms_norm (tensor, norm_weights):# rms = (tensor.pow (2).mean (-1, keepdim=True) + norm_eps)**0.5# return tensor * (norm_weights /rms)def rms_norm (tensor, norm_weights): return (tensor * torch.rsqrt (tensor.pow (2).mean (-1, keepdim=True) + norm_eps)) * norm_weights

构建 transformer 第一层。完成上述准备后,接着是构建 transformer 第一层:从模型文件中访问 layer.0(即第一层),归一化后嵌入维度仍然是 [17x4096] 。



token_embeddings = rms_norm (token_embeddings_unnormalized, model ["layers.0.attention_norm.weight"])token_embeddings.shape

torch.Size ([17, 4096])

从头开始实现注意力。加载第一层 transformer 的注意力头:



print ( model ["layers.0.attention.wq.weight"].shape, model ["layers.0.attention.wk.weight"].shape, model ["layers.0.attention.wv.weight"].shape, model ["layers.0.attention.wo.weight"].shape)torch.Size ([4096, 4096]) torch.Size ([1024, 4096]) torch.Size ([1024, 4096]) torch.Size ([4096, 4096])

展开查询。展开来自多个注意力头的查询,得到的形状是 [32x128x4096],这里,32 是 llama3 中注意力头的数量,128 是查询向量的大小,4096 是 token 嵌入的大小。

q_layer0 = model ["layers.0.attention.wq.weight"]head_dim = q_layer0.shape [0] //n_headsq_layer0 = q_layer0.view (n_heads, head_dim, dim)q_layer0.shape

torch.Size ([32, 128, 4096])

从头实现第一层的第一个头。访问第一层的查询权重矩阵,大小是 [128x4096]。

q_layer0_head0 = q_layer0 [0]q_layer0_head0.shape

torch.Size ([128, 4096])

将查询权重与 token 嵌入相乘,从而得到 token 的查询,在这里你可以看到结果大小是 [17x128]。



q_per_token = torch.matmul (token_embeddings, q_layer0_head0.T)q_per_token.shape

torch.Size ([17, 128])

定位编码。现在处于这样一个阶段,即对提示符中的每个 token 都有一个查询向量,但是考虑单个查询向量,我们不知道其提示符中的位置。作者使用了 RoPE(旋转位置嵌入)来解决。



q_per_token_split_into_pairs = q_per_token.float ().view (q_per_token.shape [0], -1, 2)q_per_token_split_into_pairs.shape

torch.Size ([17, 64, 2])

在上面的步骤中,该研究将查询向量分成对,并对每对应用旋转角度移位。



使用复数点积来旋转向量。



zero_to_one_split_into_64_parts = torch.tensor (range (64))/64zero_to_one_split_into_64_parts

tensor ([0.0000, 0.0156, 0.0312, 0.0469, 0.0625, 0.0781, 0.0938, 0.1094, 0.1250, 0.1406, 0.1562, 0.1719, 0.1875, 0.2031, 0.2188, 0.2344, 0.2500, 0.2656, 0.2812, 0.2969, 0.3125, 0.3281, 0.3438, 0.3594, 0.3750, 0.3906, 0.4062, 0.4219, 0.4375, 0.4531, 0.4688, 0.4844, 0.5000, 0.5156, 0.5312, 0.5469, 0.5625, 0.5781, 0.5938, 0.6094, 0.6250, 0.6406, 0.6562, 0.6719, 0.6875, 0.7031, 0.7188, 0.7344, 0.7500, 0.7656, 0.7812, 0.7969, 0.8125, 0.8281, 0.8438, 0.8594, 0.8750, 0.8906, 0.9062, 0.9219, 0.9375, 0.9531, 0.9688, 0.9844])

freqs = 1.0 / (rope_theta ** zero_to_one_split_into_64_parts)freqs

tensor ([1.0000e+00, 8.1462e-01, 6.6360e-01, 5.4058e-01, 4.4037e-01, 3.5873e-01, 2.9223e-01, 2.3805e-01, 1.9392e-01, 1.5797e-01, 1.2869e-01, 1.0483e-01, 8.5397e-02, 6.9566e-02, 5.6670e-02, 4.6164e-02, 3.7606e-02, 3.0635e-02, 2.4955e-02, 2.0329e-02, 1.6560e-02, 1.3490e-02, 1.0990e-02, 8.9523e-03, 7.2927e-03, 5.9407e-03, 4.8394e-03, 3.9423e-03, 3.2114e-03, 2.6161e-03, 2.1311e-03, 1.7360e-03, 1.4142e-03, 1.1520e-03, 9.3847e-04, 7.6450e-04, 6.2277e-04, 5.0732e-04, 4.1327e-04, 3.3666e-04, 2.7425e-04, 2.2341e-04, 1.8199e-04, 1.4825e-04, 1.2077e-04, 9.8381e-05, 8.0143e-05, 6.5286e-05, 5.3183e-05, 4.3324e-05, 3.5292e-05, 2.8750e-05, 2.3420e-05, 1.9078e-05, 1.5542e-05, 1.2660e-05, 1.0313e-05, 8.4015e-06, 6.8440e-06, 5.5752e-06, 4.5417e-06, 3.6997e-06, 3.0139e-06, 2.4551e-06])

freqs_for_each_token = torch.outer (torch.arange (17), freqs)freqs_cis = torch.polar (torch.ones_like (freqs_for_each_token), freqs_for_each_token)freqs_cis.shape# viewing tjhe third row of freqs_cisvalue = freqs_cis [3]plt.figure ()for i, element in enumerate (value [:17]): plt.plot ([0, element.real], [0, element.imag], color='blue', linewidth=1, label=f"Index: {i}") plt.annotate (f"{i}", xy=(element.real, element.imag), color='red') plt.xlabel ('Real') plt.ylabel ('Imaginary') plt.title ('Plot of one row of freqs_cis') plt.show ()



现在每个 token 查询都有了复数。

q_per_token_as_complex_numbers = torch.view_as_complex (q_per_token_split_into_pairs)q_per_token_as_complex_numbers.shape

torch.Size ([17, 64])

q_per_token_as_complex_numbers_rotated = q_per_token_as_complex_numbers * freqs_cisq_per_token_as_complex_numbers_rotated.shape

torch.Size ([17, 64])

旋转后的向量。

q_per_token_split_into_pairs_rotated = torch.view_as_real (q_per_token_as_complex_numbers_rotated)q_per_token_split_into_pairs_rotated.shape

torch.Size ([17, 64, 2])

现在有了一个新的查询向量 (旋转查询向量),形状为 [17x128],其中 17 是 token 数量,128 是查询向量的维度。

q_per_token_rotated = q_per_token_split_into_pairs_rotated.view (q_per_token.shape)q_per_token_rotated.shape

torch.Size ([17, 128])

键(几乎和查询一样),键也生成维度为 128 的键向量。键的权重只有查询的 1/4,这是因为键的权重在 4 个头之间共享,以减少所需的计算量,键也会被旋转以添加位置信息,就像查询一样。



k_layer0 = model ["layers.0.attention.wk.weight"]k_layer0 = k_layer0.view (n_kv_heads, k_layer0.shape [0] //n_kv_heads, dim)k_layer0.shape

torch.Size ([8, 128, 4096])

k_layer0_head0 = k_layer0 [0]k_layer0_head0.shape

torch.Size ([128, 4096])

k_per_token = torch.matmul (token_embeddings, k_layer0_head0.T)k_per_token.shape

torch.Size ([17, 128])

k_per_token_split_into_pairs = k_per_token.float ().view (k_per_token.shape [0], -1, 2)k_per_token_split_into_pairs.shape

torch.Size ([17, 64, 2])

k_per_token_as_complex_numbers = torch.view_as_complex (k_per_token_split_into_pairs)k_per_token_as_complex_numbers.shape

torch.Size ([17, 64])

k_per_token_split_into_pairs_rotated = torch.view_as_real (k_per_token_as_complex_numbers * freqs_cis)k_per_token_split_into_pairs_rotated.shape

torch.Size ([17, 64, 2])

k_per_token_rotated = k_per_token_split_into_pairs_rotated.view (k_per_token.shape)k_per_token_rotated.shape

torch.Size ([17, 128])

每个 token 查询和键的旋转值如下,每个查询和键现在的形状都是 [17x128]。



接下来一步是将查询和键矩阵相乘。注意力得分矩阵 (qk_per_token) 的形状为 [17x17],其中 17 是提示中 token 的数量。



qk_per_token = torch.matmul (q_per_token_rotated, k_per_token_rotated.T)/(head_dim)**0.5qk_per_token.shape

torch.Size ([17, 17])

现在必须掩蔽查询键分数。

在 llama3 的训练过程中,未来 token 的 qk 分数被掩蔽。这是因为在训练期间,只学习使用过去的 token 来预测未来的 token。因此在推理过程中,将未来的 token 标记为零。



def display_qk_heatmap (qk_per_token): _, ax = plt.subplots () im = ax.imshow (qk_per_token.to (float).detach (), cmap='viridis') ax.set_xticks (range (len (prompt_split_as_tokens))) ax.set_yticks (range (len (prompt_split_as_tokens))) ax.set_xticklabels (prompt_split_as_tokens) ax.set_yticklabels (prompt_split_as_tokens) ax.figure.colorbar (im, ax=ax) display_qk_heatmap (qk_per_token)



mask = torch.full ((len (tokens), len (tokens)), float ("-inf"), device=tokens.device) mask = torch.triu (mask, diagonal=1) mask

tensor ([[0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

qk_per_token_after_masking = qk_per_token + maskdisplay_qk_heatmap (qk_per_token_after_masking)





qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax (qk_per_token_after_masking, dim=1).to (torch.bfloat16) display_qk_heatmap (qk_per_token_after_masking_after_softmax)



值(几乎在注意力结束时)



这些分数 (0-1) 被用于确定每个 token 使用了多少值矩阵。

就像键一样,值权重也在 4 个注意力头之间共享(以节省计算量)

结果,下面的值权重矩阵形状为 [8x128x4096]

v_layer0 = model ["layers.0.attention.wv.weight"] v_layer0 = v_layer0.view (n_kv_heads, v_layer0.shape [0] //n_kv_heads, dim) v_layer0.shape

torch.Size ([8, 128, 4096])

第一层和第一个头的值权重矩阵如下所示。

v_layer0_head0 = v_layer0 [0] v_layer0_head0.shape

torch.Size ([128, 4096])

值向量如下图所示。



现在使用值权重来获取每个 token 的注意力值,其大小为 [17x128],其中 17 为提示中的 token 数,128 为每个 token 的值向量维数。

v_per_token = torch.matmul (token_embeddings, v_layer0_head0.T)v_per_token.shape

torch.Size ([17, 128])

注意力如下图所示。



与每个 token 的值相乘后得到的注意力向量的形状为 [17*128]。

qkv_attention = torch.matmul (qk_per_token_after_masking_after_softmax, v_per_token) qkv_attention.shape

torch.Size ([17, 128])

多头注意力与单头注意力如下图所示。



现在有了第一层和第一个头的注意力值。

接下来运行一个循环并执行与上面单元完全相同的数学运算,不过第一层中的每个头除外。

qkv_attention_store = []for head in range (n_heads): q_layer0_head = q_layer0 [head] k_layer0_head = k_layer0 [head//4] # key weights are shared across 4 headsv_layer0_head = v_layer0 [head//4] # value weights are shared across 4 headsq_per_token = torch.matmul (token_embeddings, q_layer0_head.T) k_per_token = torch.matmul (token_embeddings, k_layer0_head.T) v_per_token = torch.matmul (token_embeddings, v_layer0_head.T)

q_per_token_split_into_pairs = q_per_token.float ().view (q_per_token.shape [0], -1, 2) q_per_token_as_complex_numbers = torch.view_as_complex (q_per_token_split_into_pairs) q_per_token_split_into_pairs_rotated = torch.view_as_real (q_per_token_as_complex_numbers * freqs_cis [:len (tokens)]) q_per_token_rotated = q_per_token_split_into_pairs_rotated.view (q_per_token.shape)

k_per_token_split_into_pairs = k_per_token.float ().view (k_per_token.shape [0], -1, 2) k_per_token_as_complex_numbers = torch.view_as_complex (k_per_token_split_into_pairs) k_per_token_split_into_pairs_rotated = torch.view_as_real (k_per_token_as_complex_numbers * freqs_cis [:len (tokens)]) k_per_token_rotated = k_per_token_split_into_pairs_rotated.view (k_per_token.shape)

qk_per_token = torch.matmul (q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5mask = torch.full ((len (tokens), len (tokens)), float ("-inf"), device=tokens.device) mask = torch.triu (mask, diagonal=1) qk_per_token_after_masking = qk_per_token + maskqk_per_token_after_masking_after_softmax = torch.nn.functional.softmax (qk_per_token_after_masking, dim=1).to (torch.bfloat16) qkv_attention = torch.matmul (qk_per_token_after_masking_after_softmax, v_per_token) qkv_attention = torch.matmul (qk_per_token_after_masking_after_softmax, v_per_token) qkv_attention_store.append (qkv_attention)len (qkv_attention_store)

32



现在第一层上的所有 32 个头都有了 qkv_attention 矩阵,并在快结束的时候将所有注意力分数合并为一个大小为 [17x4096] 的大矩阵。

stacked_qkv_attention = torch.cat (qkv_attention_store, dim=-1) stacked_qkv_attention.shape

torch.Size ([17, 4096])

权重矩阵是最后的步骤之一。



第 0 层注意力要做的最后一件事是,对以下的权重矩阵进行乘法操作。

w_layer0 = model ["layers.0.attention.wo.weight"] w_layer0.shape

torch.Size ([4096, 4096])

这是一个简单的线性层,所以只做矩阵乘法(matmul)。

embedding_delta = torch.matmul (stacked_qkv_attention, w_layer0.T) embedding_delta.shape

torch.Size ([17, 4096])



现在,注意力之后的嵌入值有了变化,并应该被添加到原始 token 嵌入中。

embedding_after_edit = token_embeddings_unnormalized + embedding_deltaembedding_after_edit.shape

torch.Size ([17, 4096])

归一化并在嵌入 delta 过程中运行一个前馈神经网络。



embedding_after_edit_normalized=rms_norm(embedding_after_edit,model["layers.0.ffn_norm.weight"])embedding_after_edit_normalized.shape

torch.Size ([17, 4096])

加载 ff 权重,并实现前馈网络。



llama3 使用 SwiGLU 前馈网络,该网络架构非常擅长在模型需要时添加非线性。当前,在 LLMs 中使用这一前馈网络是非常标准的做法。

w1 = model ["layers.0.feed_forward.w1.weight"] w2 = model ["layers.0.feed_forward.w2.weight"] w3 = model ["layers.0.feed_forward.w3.weight"] output_after_feedforward = torch.matmul (torch.functional.F.silu (torch.matmul (embedding_after_edit_normalized, w1.T)) * torch.matmul (embedding_after_edit_normalized, w3.T), w2.T) output_after_feedforward.shape

torch.Size ([17, 4096])

现在终于在第一层之后为每个 token 提供了新的编辑后的嵌入,并且在完成之前只剩下 31 层需要处理(one for loop away)。

你可以想象这个编辑后的嵌入拥有在第一层上所有查询的信息。现在每一层将在所问问题上编码越来越复杂的查询,直到得到的嵌入了解所需的下一个 token 的一切。

layer_0_embedding = embedding_after_edit+output_after_feedforwardlayer_0_embedding.shape

torch.Size ([17, 4096])

之前为每一层做的所有事情,都可以一次性完成。



final_embedding = token_embeddings_unnormalizedfor layer in range (n_layers): qkv_attention_store = [] layer_embedding_norm = rms_norm (final_embedding, model [f"layers.{layer}.attention_norm.weight"]) q_layer = model [f"layers.{layer}.attention.wq.weight"] q_layer = q_layer.view (n_heads, q_layer.shape [0] //n_heads, dim) k_layer = model [f"layers.{layer}.attention.wk.weight"] k_layer = k_layer.view (n_kv_heads, k_layer.shape [0] //n_kv_heads, dim) v_layer = model [f"layers.{layer}.attention.wv.weight"] v_layer = v_layer.view (n_kv_heads, v_layer.shape [0] //n_kv_heads, dim) w_layer = model [f"layers.{layer}.attention.wo.weight"] for head in range (n_heads): q_layer_head = q_layer [head] k_layer_head = k_layer [head//4] v_layer_head = v_layer [head//4] q_per_token = torch.matmul (layer_embedding_norm, q_layer_head.T) k_per_token = torch.matmul (layer_embedding_norm, k_layer_head.T) v_per_token = torch.matmul (layer_embedding_norm, v_layer_head.T) q_per_token_split_into_pairs = q_per_token.float ().view (q_per_token.shape [0], -1, 2) q_per_token_as_complex_numbers = torch.view_as_complex (q_per_token_split_into_pairs) q_per_token_split_into_pairs_rotated = torch.view_as_real (q_per_token_as_complex_numbers * freqs_cis) q_per_token_rotated = q_per_token_split_into_pairs_rotated.view (q_per_token.shape) k_per_token_split_into_pairs = k_per_token.float ().view (k_per_token.shape [0], -1, 2) k_per_token_as_complex_numbers = torch.view_as_complex (k_per_token_split_into_pairs) k_per_token_split_into_pairs_rotated = torch.view_as_real (k_per_token_as_complex_numbers * freqs_cis) k_per_token_rotated = k_per_token_split_into_pairs_rotated.view (k_per_token.shape) qk_per_token = torch.matmul (q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5 mask = torch.full ((len (token_embeddings_unnormalized), len (token_embeddings_unnormalized)), float ("-inf")) mask = torch.triu (mask, diagonal=1) qk_per_token_after_masking = qk_per_token + mask qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax (qk_per_token_after_masking, dim=1).to (torch.bfloat16) qkv_attention = torch.matmul (qk_per_token_after_masking_after_softmax, v_per_token) qkv_attention_store.append (qkv_attention)

stacked_qkv_attention = torch.cat (qkv_attention_store, dim=-1) w_layer = model [f"layers.{layer}.attention.wo.weight"] embedding_delta = torch.matmul (stacked_qkv_attention, w_layer.T) embedding_after_edit = final_embedding + embedding_delta embedding_after_edit_normalized = rms_norm (embedding_after_edit, model [f"layers.{layer}.ffn_norm.weight"]) w1 = model [f"layers.{layer}.feed_forward.w1.weight"] w2 = model [f"layers.{layer}.feed_forward.w2.weight"] w3 = model [f"layers.{layer}.feed_forward.w3.weight"] output_after_feedforward = torch.matmul (torch.functional.F.silu (torch.matmul (embedding_after_edit_normalized, w1.T)) * torch.matmul (embedding_after_edit_normalized, w3.T), w2.T) final_embedding = embedding_after_edit+output_after_feedforward

现在有了最终的嵌入,即该模型对下一个 token 的最佳猜测。该嵌入的形状与常见的 token 嵌入 [17x4096] 相同,其中 17 为 token 数,4096 为嵌入维数。



final_embedding = rms_norm (final_embedding, model ["norm.weight"]) final_embedding.shape

torch.Size ([17, 4096])

将该嵌入解码为 token 值。



使用该输入解码器将最终的嵌入转换为一个 token。

model ["output.weight"].shape

torch.Size ([128256, 4096])

使用最后 token 的嵌入来预测下一个值。在示例中,42 是「生命、宇宙和万物终极问题的答案是什么」的答案,根据《银河系漫游指南》一书,大多数现代 LLMs 都会回答 42,应该验证了整个代码。

logits = torch.matmul (final_embedding [-1], model ["output.weight"].T) logits.shape

torch.Size ([128256])

模型预测 token 数 2983 为下一个 token,这是 42 的 token 数吗?以下是最后的代码单元。

next_token = torch.argmax (logits, dim=-1) next_token

tensor (2983)

最后,启动。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
为什么东北女人大多高大且丰腴?

为什么东北女人大多高大且丰腴?

亦水寒
2024-06-02 05:37:41
美传爆炸性消息,普京有大麻烦,捷克外长:事态紧急,没中国不行

美传爆炸性消息,普京有大麻烦,捷克外长:事态紧急,没中国不行

千里持剑
2024-05-31 14:39:29
这是极品中的极品吗?明星就是漂亮,上镜都不如真人好看。

这是极品中的极品吗?明星就是漂亮,上镜都不如真人好看。

小米虫侃人物
2024-06-03 08:39:23
精致的脸庞、漂亮的可爱

精致的脸庞、漂亮的可爱

娱乐八卦木木子
2024-05-10 17:37:22
“香会”智库报告偏颇指责中国,中国学者当场反驳引起共鸣

“香会”智库报告偏颇指责中国,中国学者当场反驳引起共鸣

环球网资讯
2024-06-02 22:07:35
彻底倒向美囯?拒绝中方移民,驱离中方工人,中方大怒:永不合作

彻底倒向美囯?拒绝中方移民,驱离中方工人,中方大怒:永不合作

星辰故事屋
2024-04-27 19:04:44
重伤归来全零封!裤袜:这赛季很难,但所有努力换来踢决赛的机会

重伤归来全零封!裤袜:这赛季很难,但所有努力换来踢决赛的机会

直播吧
2024-06-03 10:40:14
外滩女警意外“出圈”,本人回应!

外滩女警意外“出圈”,本人回应!

新民晚报
2024-06-02 09:29:29
闹大了!董明珠称:打工人想要休闲可以辞职,王自如评论区沦陷

闹大了!董明珠称:打工人想要休闲可以辞职,王自如评论区沦陷

阿平爱生活23
2024-06-02 13:00:37
泰晤士:下赛季欧足联将允许曼城、赫罗纳同时踢欧冠

泰晤士:下赛季欧足联将允许曼城、赫罗纳同时踢欧冠

直播吧
2024-06-03 06:57:04
坎特:祝贺皇马夺欧冠,他们阵中有三个法国人,姆巴佩还没官宣

坎特:祝贺皇马夺欧冠,他们阵中有三个法国人,姆巴佩还没官宣

直播吧
2024-06-02 22:37:07
既然把周鹏下嫁给深圳,为什么转而又回了曾经的婆家?

既然把周鹏下嫁给深圳,为什么转而又回了曾经的婆家?

圈里的甜橙子
2024-06-03 00:45:03
国内996是福报,日本应届生供不应求?日企:一年129天带薪年假!

国内996是福报,日本应届生供不应求?日企:一年129天带薪年假!

今日搞笑分享
2024-06-01 01:29:39
浦东最偏的地方,凭啥10万+?

浦东最偏的地方,凭啥10万+?

暖心的小屋
2024-06-03 00:25:03
万万没想到!双色球2024062期,龙头号码4期相同,蓝球16

万万没想到!双色球2024062期,龙头号码4期相同,蓝球16

双色球的方向舵
2024-06-03 01:48:06
意甲大结局:亚特兰大精准控盘 做掉罗马踢欧冠 输佛罗伦萨收官

意甲大结局:亚特兰大精准控盘 做掉罗马踢欧冠 输佛罗伦萨收官

智道足球
2024-06-03 08:28:37
女人在过夫妻性生活时,为什么总发出声音?医生:大多数人不了解

女人在过夫妻性生活时,为什么总发出声音?医生:大多数人不了解

皮皮讲文
2024-01-02 10:36:17
英国皇室松口爆料凯特现状

英国皇室松口爆料凯特现状

华人星光
2024-06-02 18:30:57
比亚迪员工爆:为高薪名气来比亚迪,发现都草台班子,靠自己摸索

比亚迪员工爆:为高薪名气来比亚迪,发现都草台班子,靠自己摸索

娱乐圈的笔娱君
2024-06-03 00:43:41
谁打断了中国防长发言?无妨:就要用你们的场子,唱足我们的戏

谁打断了中国防长发言?无妨:就要用你们的场子,唱足我们的戏

说天说地说实事
2024-06-02 19:01:31
2024-06-03 10:58:44
机器之心Pro
机器之心Pro
专业的人工智能媒体
9040文章数 141935关注度
往期回顾 全部

科技要闻

2万字演讲|黄仁勋剧透 未来3年新品有这些

头条要闻

岛内舆论批赖清德上任后像"斗鸡" 表现比蔡英文还差

头条要闻

岛内舆论批赖清德上任后像"斗鸡" 表现比蔡英文还差

体育要闻

万人空巷!皇马举行欧冠夺冠庆典

娱乐要闻

白玉兰提名:胡歌、范伟争视帝

财经要闻

黄仁勋的计划:涉及新AI平台 HBM4 机器人

汽车要闻

搭载华为HiCAR 传祺M6 MAX售14.58万元

态度原创

数码
游戏
本地
时尚
公开课

数码要闻

古尔曼:WWDC 2024不会发布新硬件

顽皮狗:我们不会变成《最后的生还者》工作室

本地新闻

食味印象|歙县限定!枇杷味儿的清甜初夏

这些中年妈妈太会打扮了,剪短发还穿长裙,美得没有年龄感

公开课

近视只是视力差?小心并发症

无障碍浏览 进入关怀版