网易首页 > 网易号 > 正文 申请入驻

2024年6月英语专业四级考试参考答案,来啦!

0
分享至

专四听力Talk部分,巨难吗?考的是Machine Learning(就是人工智能的哈,文中说机器学习是人工智能最强大的分支)。

参考答案就在如下文

Machine learning
Good morning, everyone.Today I'd like to start with what a study has found out. Ah, in 2013 researchers from the UK did a study on the future of work. They concluded that almost one in every two jobs has a high risk of being automated by machines. And machine learning is the most powerful branch of artificial intelligence. It allows machines to learn from data and mimic some of the things that humans can do. Now, I'd like to discuss briefly what machines can do and what they can't do and what jobs they might automate or threaten. Okay, let's begin with a bit of the history of machine learning.

Machine learning started making its way into the industrial world in the early nineteen nineties. It started with relatively simple tasks. For example, it started with things like sorting the mail by reading handwritten characters from zip codes. Over the past decade, dramatic breakthroughs have been made. Now, machine learning is capable of far, far more complex tasks. In 2012 a machine was built that could grade high school essays, and it was able to match the grades given by human teachers. Last year, researchers issued an even more difficult challenge. That is, can a machine take images of the eye and diagnose an eye disease? Again, the machine was able to match the diagnosis given by human eye doctors.Now, given the right data, machines are going to outperform humans at tasks like this. A teacher might read 10,000 essays over a forty-year career, an eye doctor might see 50,000 eyes in the same period, but a machine can read millions of essays or see millions of eyes within minutes. We humans have no chance of competing against machines on such frequent high volume tasks.

Then, can machines perform all the human tasks? The answer is no. There are things we can do that machines can't. Where machines have made very little progress is in tackling novel situations. That is, machines can't handle things they haven't seen many times before. Therefore, the fundamental limitation of machine learning is that it needs to learn from large volumes of past data. But we humans don't have to. We have the ability to connect seemingly entirely different threads to solve problems we've never seen before, and this happens every day for each of us in small ways, thousands of times. Machines cannot compete with us when it comes to tackling unknown situations, and this puts a fundamental limit on the human tasks that machines will automate. So what does this mean for the future of work? I think the future state of any single job lies in the answer to a single question. That is, to what extent is that job reducible to frequent high volume tasks? And to what extent does it involve tackling novel or unknown situations? On those frequent high volume tasks, machines are getting smarter and smarter. Today, they grade essays, they diagnose certain diseases. I guess in a short time they're going to conduct our audits and they're going to read the standard legal language from legal contracts. Of course, accountants and lawyers are still needed, but they're going to be needed for complex tax structuring, for path breaking lawsuits. But machines will shrink their ranks and make these jobs harder to come by.

Now, as I mentioned just now, machines are not making progress on novel situations. Let me give you another example. An advertising copy behind a marketing campaign needs to grab consumers attention. The copy has to stand out from the crowd because business strategy means finding gaps in the market, things that nobody else is doing. That is something unknown and it will be humans that are creating the copy behind our marketing campaigns and it will also be humans that are developing our business strategy. Machines can't fulfill such tasks.

Okay, today we've looked at machine learning what machines can do, what they can't do and the future of work. Now I'd like to leave you a question. To what extent will machines change the way we study in the future? Thank you.

来源:@雅思写作胡歌fisher

听力解析

本答案考神团队老师解析,仅供参考

语言运用解析

本答案考神团队老师解析,仅供参考

完型解析

本答案考神团队老师解析,仅供参考

阅读解析

本答案考神团队老师解析,仅供参考

写作材料

本答案考神团队老师解析,仅供参考

来源:有道考神专四专八

【特别声明】本公众平台除特别注明原创或授权转载外,其他文章均为转载,版权归原作者或平台所有,出于传递信息之目的,并没有任何商业目的。本公号尊重知识产权,如无意中侵犯了您的权益,请及时联系后台,本公号将及时删除。

合集收藏

备考专辑: & & &

语音单词: & & &

新闻英语: & &&

歌曲TED: & & & &

美文故事: & & & &

名字外教: & & & & &

微信公众号改版,订阅号消息不再按时间排序,为了防止迷路,希望小可爱们可以动动小小手点个“在看”或者将“小芳老师”添加到★“星标”☆中!让系统知道这是你喜欢看的公众号,这样我们就可以一直就可以永远幸福在一起啊

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
朱雨玲怒了!两次遭到严重人身骚扰,安全受到威胁,发声明:已经报案

朱雨玲怒了!两次遭到严重人身骚扰,安全受到威胁,发声明:已经报案

喜欢历史的阿繁
2025-09-14 06:25:05
我终于明白,为什么当时阿玛尼创始人会那样抱着孟子义了

我终于明白,为什么当时阿玛尼创始人会那样抱着孟子义了

小光侃娱乐
2025-09-07 20:40:04
新国标限速 25km/h,雅迪爱玛们只能卖情绪价值了

新国标限速 25km/h,雅迪爱玛们只能卖情绪价值了

蓝字计划
2025-09-12 16:51:23
华为官宣:9月26日,新机正式开售!

华为官宣:9月26日,新机正式开售!

科技堡垒
2025-09-13 10:49:11
美国就算一动不动,中国20年也追不上?九三阅兵后,局势已被改写

美国就算一动不动,中国20年也追不上?九三阅兵后,局势已被改写

书中自有颜如玉
2025-09-10 10:41:55
越扒越有!程青松关注曝光,颜值基本堪比于朦胧,私聊实在太脏

越扒越有!程青松关注曝光,颜值基本堪比于朦胧,私聊实在太脏

往史过眼云烟
2025-09-13 19:16:04
特朗普举着孩子照片,对哭泣的母亲承诺:我相信中国会执行死刑的

特朗普举着孩子照片,对哭泣的母亲承诺:我相信中国会执行死刑的

博览历史
2025-07-21 17:59:30
乔任梁父母:当年他们没有放过我儿子,现在也不想放过我们夫妻俩

乔任梁父母:当年他们没有放过我儿子,现在也不想放过我们夫妻俩

杜鱂手工制作
2025-09-14 06:00:41
河北孟村杀妻案最新消息,母亲身体不适,弟弟重申不出具谅解书

河北孟村杀妻案最新消息,母亲身体不适,弟弟重申不出具谅解书

九方鱼论
2025-09-13 22:40:51
浙江卫视首播!42集谍战大剧来袭!收视率高开疯走,强情节快节奏

浙江卫视首播!42集谍战大剧来袭!收视率高开疯走,强情节快节奏

阿乐乐电影v
2025-09-12 17:45:08
34岁东北姑娘拿下81岁全球首富,长得很漂亮,一年抱俩娃身价上亿

34岁东北姑娘拿下81岁全球首富,长得很漂亮,一年抱俩娃身价上亿

妙知
2025-09-12 09:46:19
婴儿出生后必须称重,观音大士:出生几斤几两与这辈子运势相关联

婴儿出生后必须称重,观音大士:出生几斤几两与这辈子运势相关联

古怪奇谈录
2025-09-06 10:18:25
西贝发布致顾客长信:向全社会公布!记者实地探访上海门店后厨,食客说法不一

西贝发布致顾客长信:向全社会公布!记者实地探访上海门店后厨,食客说法不一

墨染时光
2025-09-13 11:56:12
罗永浩赢定了?850万粉丝网红探店西贝:贵、用料理包、早晚完蛋

罗永浩赢定了?850万粉丝网红探店西贝:贵、用料理包、早晚完蛋

小嵩
2025-09-12 16:07:33
赢麻了!清北都放弃,华科大一新生发言称高考690分,全省前30…

赢麻了!清北都放弃,华科大一新生发言称高考690分,全省前30…

火山诗话
2025-09-12 06:02:07
笑不活!西贝麻六记都晒后厨了,预制菜咋还越辩越懵?

笑不活!西贝麻六记都晒后厨了,预制菜咋还越辩越懵?

做一个合格的吃瓜群众
2025-09-13 16:35:04
直降500元,苹果新机官宣:9月12日,全面开售!

直降500元,苹果新机官宣:9月12日,全面开售!

科技堡垒
2025-09-12 10:25:52
风水师:旧物不可乱丢,旧衣不送人,3个处理方法,守住你的财气

风水师:旧物不可乱丢,旧衣不送人,3个处理方法,守住你的财气

古怪奇谈录
2025-09-11 14:21:18
特谢拉,英雄迟暮 2024年以来只有1个进球,35岁身价仅20万欧

特谢拉,英雄迟暮 2024年以来只有1个进球,35岁身价仅20万欧

直播吧
2025-09-13 11:15:04
出大事了,导弹从天而降,以色列深夜被炸,美大使馆跟着“倒霉”

出大事了,导弹从天而降,以色列深夜被炸,美大使馆跟着“倒霉”

小涛叨叨
2025-09-13 10:12:28
2025-09-14 09:12:49
英语教学 incentive-icons
英语教学
英语学习,读书进步!
21283文章数 100822关注度
往期回顾 全部

教育要闻

小学五年级压轴题目,全班只有两名同学做对,太难了

头条要闻

西贝曾申请"速冻复热辣椒炒肉"专利被驳回 后续来了

头条要闻

西贝曾申请"速冻复热辣椒炒肉"专利被驳回 后续来了

体育要闻

27年的等待结束?挪威最快下个月进世界杯

娱乐要闻

杨幂回复祝福区别对待祝绪丹引热议

财经要闻

西贝贾国龙,“错”得离谱

科技要闻

京东淘宝iPhone17基础版十分钟被抢空

汽车要闻

混动狂潮 835马力V12 阿斯顿·马丁的最后浪漫

态度原创

时尚
手机
健康
数码
公开课

衣服“买精不买多”,日常准备这几款单品,简单舒适又大方

手机要闻

Q2全球畅销手机大揭秘:iPhone 16系列霸榜,小米成国产独苗!

内分泌科专家破解身高八大谣言

数码要闻

鹏辉能源新一代移动电源(充电宝)电池 Secu 系列上市

公开课

李玫瑾:为什么性格比能力更重要?

无障碍浏览 进入关怀版