网易首页 > 网易号 > 正文 申请入驻

马斯克的底裤要被扒光了!超级爆料一个多小时, xAI 工程师被火速解雇

0
分享至


整理 | 褚杏娟

Sulaiman Ghori 在一期播客中,用了一个多小时详细讲述了他在 xAI 的经历。他说,在那里“从来没有人对我说不”,每个人都被充分信任去做正确的事;只要是好想法,当天就能落地、当天就能得到反馈。他还提到,马斯克愿意被证明是错的,只要你能拿出实验数据。

他也坦言,在上一家公司,很多事情也许他一个人能做得更快;但在 xAI,整体反而更快,因为几乎没有官僚流程。这些话,听起来都是对公司的认同和马斯克的赞扬,实际上他还说自己是马斯克粉丝。

然后,播客发出来后第 3 天,他被解雇了。

外界猜测是因为他说了太多敏感信息。节目中,他透露了利用闲置特斯拉汽车驱动的人类模拟器 AI 代理的计划、还有马斯克如何快速构建 Colossus 超级集群、xAI 在模型策略上的核心决策,曝光了公司内部部署测试的 AI 虚拟员工等,还有 xAI 也被完全曝光。他坦率地谈到了激进的时间表、马斯克亲自参与的 Cybertruck 奖金计划、内部文化和运营方式以及一些非公开的策略,这些言论引发了外界的强烈反响。


经历被玩梗:如何在 1 小时内毁掉你的一生,对应了最近 x 的爆文“如何在 1 小时内修复你的一生”

Sulaiman 自 2019 年起持续创业。在德国上大学一个月后退学,为了实现童年创办航天公司的梦想,在自家后院亲手制造过一台液体燃料火箭发动机。创业失败后,他进入 xAI。对于他的经历,有网友表示,“这位兄弟跑去上播客,没拿到明确授权,就顺手把一堆内部敏感信息抖出来,这就是纯纯的新手行为。可以说,这是职业生涯级别的大忌。任何一家严肃的公司都会立刻把你原地开除,更别说是像马斯克这样的人。”

我们翻译并整理了他这期“超级爆料”的播客对话,并在不改变原意基础上进行了删减,以飨读者。

在 xAI,事情永远是

“昨天就该完成”

主持人:今天我很高兴能和 Sulaiman Ghori 坐下来聊聊,他是 xAI 的一名工程师。我从 2023 年马斯克刚开始搞 xAI 的时候就一直很关注这家公司,感觉它可能是史上增长最快的公司之一。你能不能跟大家讲讲,现在 xAI 到底在发生什么?

Sulaiman:说实话,我们几乎没有所谓的 deadline,永远都是“昨天就该完成”。基本没有什么人为障碍。马斯克一直强调要“追根溯源”,找到最底层、最根本的东西,不管是物理层面的还是其他的。我们通常会非常快地深入到那个层面,能多快就多快。

这在软件行业其实挺有意思的,因为你平时不太会把硬件这件事放在心上,但我们确实花了很多精力去考虑这些。而且严格来说,我们现在也不完全算是一家纯软件公司了,毕竟基础设施的建设占了很大一部分。

主持人:对,现在明显是被硬件限制住的。

Sulaiman:没错。硬件可能是我们最大的优势之一,因为在部署能力上,几乎没有其他公司能接近我们。不过,软件方面的人才密度也高得惊人,我从来没在任何地方见过这样的团队。

主持人:我觉得马斯克有一点特别厉害:他很擅长提前判断未来几个月、甚至几年后会出现什么瓶颈,然后从那个未来的瓶颈反推,确保自己现在就站在一个很好的位置上。这种思维方式在日常工作中是怎么影响普通工程师、AI 开发者的?

Sulaiman:通常我们一旦要快速启动一个新项目,不管是我们还是他自己,都会先定一个指标。这个指标一般都非常核心,要么直接关系到财务回报,要么关系到硬件层面的产出,有时候两者都有。之后,所有事情都会围绕着这个指标来推进。而且我们不太接受那种“这事本来就不可能”的说法,就算真有极限,那也必须是一个扎根在最底层的、本质性的限制,而不是人为的。

软件行业里,尤其是过去十年做 Web 开发的人,往往会默认、接受很多所谓的限制,比如速度、延迟之类的。但实际上这些限制很多都是假的。技术栈里有大量没必要的开销和“蠢东西”,如果你能把这些清掉,很多系统都能直接提升 2 到 8 倍,至少是那些相对比较新的东西。当然,也有些老东西确实不好动。

主持人:你最近一次真正感受到“传统认知被彻底打碎”的经历是什么?

Sulaiman:最近一次就是我们在 Macrohood 上做模型迭代。我们同时在做几种全新的架构,而且是并行推进的。现在我们几乎每天都会出新版本,有时候一天不止一次,有些甚至是从预训练阶段就开始重新来。这在业内其实非常少见。

这背后有几个原因:第一,我们有一支非常强的超算团队,他们解决了很多训练过程中常见的障碍。即便我们的硬件环境变化很大,但通常一个机架搭好后,一天之内就能开始训练,有时候甚至几个小时就可以。

主持人:这真的很不正常,一般不是都要好几天吗?

Sulaiman:甚至好几周。过去十年里,大多数人都是把这些事情抽象掉,交给 Amazon、Google 去管,他们给你多少算力你就用多少。但在 AI 时代,这种方式是行不通的。要么你死掉,要么你自己把这些东西建出来。

入职初体验:没人管,

做模型和产品默认资源到位

主持人:当初为什么加入 xAI,以及前几周入职体验怎样?

Sulaiman:我当时刚搬到湾区,在做自己的创业项目。那段时间,xAI 的联合创始人之一 Greg Yang 主动联系了我。他真的很会招人。

我一开始收到邮件的时候还以为是垃圾邮件,因为那时候我经常收到那种“嘿,想聊聊吗”“我很欣赏你做的事情”之类的邮件。正准备删掉的时候,看到发件人的域名是 xAI,我一下反应过来:等等,这不是那帮人吗?当时他们大概成立了八个月左右,我就答应先聊聊。我们聊了好几次,我本来还想再试试别的机会,但后来发现时机不太对。

那个项目最后也没做下去,原因很明显:用一百万美元是不可能把 Macrohard 这种东西做出来的,但想法本身是对的。接下来六七个月,我基本是在烧钱,做各种航天相关的小项目,还试过一个“空气空间”相关的概念,后来也发现大概率行不通,但至少试过了。于是,我又给 Greg 发邮件,说能不能再聊聊。他直接回我:要不要明天面试?我说“好”。

面试还算顺利,我周一就搬家,直接入职了。第一天真的没人管我,就给了我一台电脑和工牌。我当时想:那现在怎么办?我去找 Greg,说我连团队都没有,也没人告诉我该干嘛。他当初招我进来,更多是因为他认可我之前做的事情,也觉得和 Macrohard 的长期方向相关,但那时候 Macrohood 甚至还算不上一个正式项目。

后来正好 Ask Grok 要启动,做和 X 的集成,他们问我能不能帮忙,我说当然可以。第一周我基本就是和另外一个人一起干活。但我很快意识到,在 xAI,你坐在工位上,甚至站起来一看,就能指着某个东西说:哦,这是那个人做的。这种感觉非常酷。而且我连固定工位都没有,就坐在当天没来的人桌子旁。

主持人:那时候公司里人其实也不多吧?

Sulaiman:对,大概也就几百人,工程团队一百来号人。基础设施团队具体多少人我也说不太清,因为有些人是从其他团队慢慢转到我们正式编制里的。但整体规模确实比其他实验室小个数量级。当时我们刚做完 Grok 3。

主持人:真的很酷。我特别喜欢的一点是,xAI 从成立到现在的速度实在太夸张了。我记得马斯克一开始还说,不确定在别人已经领先好几年的情况下能不能成功。结果你们第一个 Colossus 数据中心 122 天就建完了,这在行业里几乎是不可想象的。这种速度塑造了一种怎样的文化?

Sulaiman:他让我们在做模型和产品的时候,可以默认资源是到位的。事实也确实如此,我们并没有被资源严重卡住。

当然,我们还是会把资源用到极限,但那是因为同时在推进二三十个、甚至更多事情。有大量训练任务并行跑着,通常是由少数几个人在推动。这也是为什么我们在模型和产品迭代上能这么快。而且这种速度让我们可以更长期地去思考。比如 Grok 4、Grok 5,其实在我加入之前、甚至 Grok 3 落地之前,规模和预期就已经设计好了。

主持人:也就是说,至少提前一年在规划?

Sulaiman:对,而且你能感觉到,这些预期大概率是能实现的,因为团队整体非常可靠。这就极大地解放了你的思维,让你不用老是纠结“我会不会做不到”。举个例子,我们之前假设的最低延迟,其实比真正需要的高了大概三倍,而基础设施的建设让我们可以做到这一点。

主持人:这是什么意思?

Sulaiman:我们在做的一种新架构,如果没有足够高的实验频率,基本是不可能推进的,因为它完全不建立在现有研究基础之上。你需要全新的预训练体系,也需要新的数据集。这本身并不完全受制于硬件资源,虽然也有一些因素,比如 Tesla 计算平台的问题。这个其实已经是公开的了。

我们现在在想一件事:如果我们用 Macrohard 去做“人类模拟器”,那要怎么部署?如果要部署一百万个“人类模拟器”,就需要一百万台计算机,这怎么可能?

结果两天后答案就出现了:Tesla 车载计算机。它的资本效率非常高,我们可以在上面跑模型,甚至跑一个完整的人类工作环境,成本比在 AWS、Oracle 的虚拟机上,甚至直接买 Nvidia 硬件都要低得多。这让我们可以假设:我们能以更快的速度、在更大的规模上部署。所以我们也相应调整了预期。

主持人:也就是说,你们基本上可以直接利用汽车网络?

Sulaiman:所以这其实是一种潜在的解决方案。简单来说,我们想要一百万个虚拟人(VMs)。仅在北美,就已经有大约 400 万辆特斯拉汽车。假设其中有三分之二,或者哪怕一半,已经配备了 Hardware 4。而且在 78% 到 80% 的时间里,这些车基本都是停在那里,要么闲置、要么在充电。那我们完全可以付费,让车主把车的算力时间“租”给我们。车本身已经有网络、有散热、有电力。我们可以直接在车上运行一个“人类模拟器”,也就是 Digital Optimus。这样一来,车主的租赁费用能被覆盖,我们这边则得到一个可以投入工作的完整人类模拟器。整个过程几乎不需要额外的基础设施建设,基本就是一个纯软件层面的方案。

主持人:对,这个资产本来就放在那里,你们只是把它用起来了,太厉害了。那从宏观层面看,这种“人类模拟器”规模化到几百万个,它的目的是什么?

Sulaiman:其实核心概念非常简单。Optimus 就是把人类能做的任何物理任务,让机器人自动完成,成本更低,而且可以 24×7 全天候运行。

我们现在做的,是把这个逻辑复制到“数字世界”。凡是人类需要通过键盘、鼠标、看屏幕、做决策来完成的数字化工作,我们都可以直接去模拟人类的操作过程。完全不需要软件方做任何适配,也不需要改系统。只要现在有一个岗位是人类在用电脑做的,我们理论上都可以直接部署。

主持人:挺有意思的。那具体会怎么推进、怎么落地呢?

Sulaiman:我们还没公开详细的落地计划,整体来说会是先慢后快。对我们来说在于,要么基础设施已经建好了,要么我们可以直接用特斯拉的网络,或者自己扩数据中心、测试算力。实际上,从一千个“人类模拟器”扩展到一百万个,差别对我们来说并没有想象中那么大,这反而不是最难的部分。

马斯克一个电话“救火”,

个人“生死自负”

主持人马斯克最擅长的一件事,就是在公司里不断“救火”,哪里有问题就冲到哪里把问题解决掉。你有没有见过那种,本来是个大问题,但被他非常快地解决掉的情况?

Sulaiman:有,最典型的就是基础设施建设,这是最大的一个。模型这边也有过一些小波折,但整体还算顺利。在模型侧,因为涉及很多非常底层、非常具体的算子,每一代 ASIC、CPU 都是为特定操作优化的,当我们引入新硬件,比如从 Nvidia 或其他厂商拿到新产品时,往往不是所有东西都能直接跑起来。

去年年初有几次内部会议,他听到这些问题之后直接打了一个电话,第二天软件团队就给我们交付了补丁。我们几乎是并肩作战,直到问题解决,然后就能很快在新硬件上跑模型或训练任务,否则这种来回沟通可能要拖上好几周。

所以很多这种“卡点”,真的就是一个电话就解决了。要么是我们主动提出来,要么他自己会问。经常在会议快结束、或者讨论暂时停顿的时候,他会突然来一句:“我能怎么帮忙?怎么能把这件事再加快一点?”然后就有人把问题抛出来。

主持人:我知道你们在并行做很多不同的产品,这在一定程度上是必须的。但在大多数组织里,同时推进多个目标,其实很难保持专注。你们是怎么做到多线并行还能高效执行的?

Sulaiman:说实话,很多时候,是在全员会议或者大家私下聊天时,我们才真正搞清楚每个人在做什么、各个项目进展到哪一步。

比如,我们当时做语音模型和语音部署,其实很多极低延迟的端到端能力早就已经在系统里了,从数据包发到客户端那一整套链路都准备好了。后来只是把正确的开关打开、解决一些冲突,延迟就直接降了两三倍。

这种情况非常常见:在软件或硬件某个角落里,存在一个“很蠢”的问题,而恰好已经有人想好了方案。你可能是在翻代码库的时候发现,或者随口问一句,有人就会说:“哦,这个 XYZ 已经搞定了,你去找他就行。”基本不需要花太多时间对齐、同步、请示。提出一个想法,反馈要么是“这想法不行”,要么是“那为什么还没做完?”然后你就直接去做,事情就这么推进了。

主持人:在马斯克的公司里,好像你只要主动要责任,就得“生死自负”。事情做成了就担负更多责任,做不成可能就出局。你的体验是这样吗?

Sulaiman:是的,基本就是这样。我参与过很多不同的项目,大多只是因为有人找我帮忙,我就一直帮下去。结果到最后,我就成了某个模块、甚至一大块系统的负责人。

对所有人来说都是这样。如果你在某个领域有经验,或者能非常快地推进事情,几天之内,这个组件就归你负责了。从“正式流程”上看其实挺混乱的。我在 HR 系统里可能还是挂在 voice 和 iOS 名下,安全系统甚至还以为我在做 X 的集成,从来没人更新这些信息。

主持人:也就是说,你进公司时并没有一个非常清晰的工作方向,就是先开始干活,然后不断在不同项目之间流动,谁需要你你就去哪?

Sulaiman:差不多是这样,会有很多重叠和流动。入职之后,我通常同时参与两三个项目,哪个最紧急、或者我能帮上最多忙,就会占用我大部分时间。然后项目之间会像瀑布一样自然切换。

主持人:那从入职到现在,你大概都做过哪些项目?

Sulaiman:一开始我做的是 Ask Grok 以及相关集成,也和后端团队一起处理过可靠性和扩展性问题,当时系统规模增长得很快;之后我独立承担了桌面端套件的开发,把它做到内部可用的完整状;接着又被拉去帮做 Imagine 的发布,以及 iOS 相关工作。说真的,iOS 团队小得离谱,和用户规模完全不匹配,你绝对猜不到有多少人。

主持人:五个?

Sulaiman:三个。当时推出时,我正好是第三个。但大家都非常强。这是我第一次感觉到,自己必须拼命跑才能跟上整体的节奏和人才密度。

主持人:那你第一次真正感觉到“自己被充分使用”的时刻是什么?

Sulaiman:肯定是 Imagine 的那次发布。我们基本是 24 小时一个迭代周期:晚上收到反馈,当晚就改;第二天早上再看新一轮反馈,接着马上修 bug、加大家想要的新功能。模型这边有新变化,我们也立刻跟进。整个节奏非常快,那可能是我连续每天都在办公室待着时间最长的一段时期。

主持人:那段时间持续了多久?

Sulaiman:大概两三个月。那段时间几乎没有周末,但我反而挺开心的,也算验证了自己能扛住这种强度。之后我就被调去做 Macrohard 产品了,当时那边只有另一个人,一开始就我们俩。我从项目启动一直做到现在。

疯狂推进度,

马斯克直接送 Cybertruck

主持人:关于 Colossus 的建设,我不知道你了解多少。早期 xAI 团队为了把 Colossus 跑起来,在供电、算力、各种基础条件上都做了很多“疯狂”的事。到现在,其实还是到处是瓶颈,总觉得还需要更多芯片、更多 GPU、更快的速度。你当时的感受是什么?

Sulaiman:这一路上有太多“战争故事”,也下过不少赌注。

主持人:挑几个讲讲吧。

Sulaiman:好。我记得 Tyler 当时和马斯克打了个赌。我们在上新机柜的时候,具体是哪一代 GPU 我都忘了。马斯克说,“如果你能在 24 小时内用这些 CPU 跑起来一次训练,我今晚就送你一辆 Cybertruck。”结果那天晚上我们真的把训练跑起来了。

主持人:他拿到了吗?

Sulaiman:拿到了。现在从我们午餐的窗户望去就能看到那辆车,马斯克人挺酷的。

说到供电,其实我们必须和市政、电力公司还有州一级的电力机构高度协同。因为当他们那边负载飙升时,我们就得立刻切断公共电网,全部切到自备电源上——大概是八十台,甚至可能更多,用卡车拉来的移动发电机。

整个切换过程必须无缝完成,不能影响任何正在跑的训练任务。你要知道,那些训练极其不稳定,GPU 和硬件的功耗可以在毫秒级别上下波动,动辄就是几兆瓦。这件事本身就非常夸张。

主持人:那是不是也是为什么你们会把巨型电池组直接放在数据中心旁边?这样负载上下波动就能更快响应?

Sulaiman:对。没有电池的话,很难这么快地调整负载,发电机毕竟是物理设备,你是在让一个真实旋转的东西加速或减速,它天然就有时间延迟,电池的反应速度要快得多。从物理层面看,整个链路是:本地电容、数据大厅侧的电容、电池、发电机,最后才是公共电网。当然,这套架构我们现在可能也在不断调整,尤其是散热这块,反应速度必须非常快。

主持人:你还有没有那种“本来不可能,但最后居然成了”的故事?

Sulaiman:有。比如我们这块地的租约,从法律意义上讲其实是临时的。这样做是为了最快通过审批、尽快开工。我猜以后会转成永久的,但现在确实是短期租约。对数据中心来说,这是目前能把事情推进得最快的方式。

主持人:他们是怎么允许这种操作的?

Sulaiman:算是一种地方和州政府层面的特殊豁免。你只是“临时”改造这块土地,类似嘉年华那种用途。

主持人:所以 xAI 本质上就是个要来的“嘉年华”?

Sulaiman:差不多就是这个意思(笑)。但正因为这样,事情推进得特别快。内部规划加建设,全程不到一个月就搞定了。

主持人:规模接下来肯定会继续疯狂扩张。马斯克 也说过,能源会是最大的瓶颈,其次才是芯片。在这种很难预测未来一到两年项目和资源需求的情况下,你们是怎么做规划的?

Sulaiman:我们会尽量从“杠杆率最高的目标”倒推。先想清楚:在某个时间点之前,我们最值得做的事情是什么。比如,如果我们想在某个日期前做到一千万甚至一亿美元收入,那从经济和系统设计角度,最有效的事情是什么?然后再倒推:需要什么软件、什么物理基础设施,最后一步步拆解。所以我们几乎不会从“硬件需求”开始,那通常是最后才考虑的。

主持人:那是不是也有一套类似 SpaceX 的“让事情发生”的算法?

Sulaiman:你是说那种“先删掉,再加回来”的逻辑?那确实一直都在用。我们经常先把某个东西砍掉,等确认必须要的时候再加回来。

主持人:你最近一次这么干是什么时候?

Sulaiman:今天(指录制当天)。Macrohard 上部署大量变化极快的物理硬件,让测试变得很难,所以我们尽量减少下游的“特殊情况”。比如,我们要让三十年前的老显示器到最新的 5K Apple 显示器,全都跑在同一套技术栈上,结果发现并不是所有系统在任何时候都能愉快地配合。比如视频编码器,在某些层级上就得反复调。

我之前不知道,后来才发现,有些编码器对“最大像素数”是有硬上限的。所以我们一开始删掉了多编码器的特殊分支,后来在 5K 分辨率上撞墙了,又不得不把这个特殊逻辑加回来。

马斯克极限压缩时间,

“办法总会有的”

主持人:在你看来,xAI 本身有哪些特别值得讲的地方?

Sulaiman:首先是人,这里的角色非常多样;其次是我们的招聘方式也挺“怪”的。有些我原本觉得很蠢的做法,结果发现居然行得通,那我们就直接试。比如搞 hackathon,如果能从五百个人里挑出五个顶级选手,这件事就非常划算。他们未来给公司带来的预期价值,远远高于这次活动的成本。

我们前几天还算了一笔账,现在主仓库里,每一次 commit 的“价值”大概是 250 万美元。我今天提交了五次。

主持人:那你今天直接加了差不多一千两百万美元?

Sulaiman:轻轻松松的一天(笑)。确实不错,杠杆效应非常强。你用更少的努力和时间就能做更多事,因为身边的人和内部工具都很棒。还有我的老板。

主持人:那什么样的人会想来这里工作?我听你描述,感觉第一天来的人就已经准备好周末、熬夜、全天候投入了。

Sulaiman:大家刚来的时候都非常兴奋,非常有热情。

主持人:使命感驱动?

Sulaiman:是的,但野心的类型不一样。有些人想往管理层走,看有多少人向自己汇报;也有人想“拥有”一大块技术栈。比如现在,我们在重构核心生产 API,基本上是一个人 +20 个 Agent 在做,而且做得非常好。你完全可以独立拥有代码库中的很大部分。

主持人:有点像 X 被收购之后那样,人很少,但每个人负责的范围巨大。

Sulaiman:没错。

主持人:除了 hackathon,你们在招聘上还有什么不太常规的做法?

Sulaiman:我们在 Macrohard 上推得非常猛。有两、三周的时间,我每周面试 20 多个人。有的只聊十五分钟,有的就是一整小时的技术面。优秀的人太多了,反而变得很难判断。

主持人:那你怎么判断?

Sulaiman:我有一道自己解决过的、非常具体的问题,是几年前在创业时遇到的一个计算机视觉问题。我会给候选人半小时去实现解决方案。

这个问题本身其实很简单,但“简单得很有欺骗性”,大多数人都会想复杂。我特别看重一点:你能否不过度思考,给出一个朴素但有效的方案。因为我们的系统要跑在跨三、四十年的各种硬件、操作系统上,如果不保持简单,下周代码量就能膨胀到一千万行。

主持人:你还会看重哪些杠杆能力?

Sulaiman:我喜欢会质疑需求、也会质疑我的人。这个方法我从 Chester Ford 那里学来的。

他在招聘时,常常会故意在题目里塞一个错误的需求、不可能的条件,期待候选人指出来。如果对方没发现,他就不招。我现在也这么干,效果非常好。

主持人:你们的节奏真的快到离谱。你自己也在做很多不同的事情,面对新任务时,怎么最快上手?

Sulaiman:要看具体是什么。如果是代码多,那就老老实实读代码,反复跳转定义,很快就能摸清楚。很多时候,实现代码比想象的要少。只有在高度活跃开发的模块里,才会同时存在二十个版本,你根本不知道哪个是主线,这时候就只能去问人。

让我惊喜的是,这里的人都非常开放、友好。我原本以为大家会很聪明、也很傲慢,但事实是:大家都很聪明,而且非常乐于帮忙。

我们不怎么写文档,因为写文档的速度跟不上开发速度(笑)。现在我们也在尝试用 AI 自动生成文档。好处是,我们有几乎无限的算力和很聪明的 AI,可以大胆试各种“蠢办法”。在别的创业公司,这可能要烧掉几十万、上百万美元,但我们几乎是零成本。结果就是:实验更多、失败更多,但成功也更多。

马斯克极限压缩时间,

“办法总会有的”

主持人:在实验这件事上,你们是怎么最大化“尝试次数”的?

Sulaiman:通常都会有时间限制。我们经常在模型侧同时跑两、三个实验。有时候不是因为时间紧,而是因为两周后某个前置条件才会就绪:可能是硬件,也可能是数据。但今天你必须上线一个东西,那就先跑几种方案,看哪个今天就能交付、能产生收入或客户效果,两周后条件成熟了再切换。这种做法在 Macrohard 里是常态。

主持人:你有没有遇到过这种情况:按理说一个项目的周期应该拉得很长,但你们却压缩后提前了好几周甚至几个月完成?这种事经常发生吗?

Sulaiman:每次都是这样,无论是跟马斯克的会议,还是内部讨论,只要有人强力推动一件事,或者有外部的人——哪怕他并不对这件事负责——提出了新的需求、要求你把某件事做出来。我们一开始都会觉得,这个时间要求太离谱了。通常会花两分钟想一想、抱怨几句,然后剩下的时间就全部用来想:怎么在这个时间内把事情做完。

说到底,对完成时间的预估,永远建立在一堆假设之上。一旦时间被压到原来的二分之一、甚至十分之一,你就会回头看这些假设并问自己:这些假设对时间的影响到底有多大?然后你要么把它们砍掉,要么调整掉。这样一来,时间线立刻就能快一倍。你多做几次这样的优化,基本上任何要求都能满足。当然,最终还是会撞上物理极限,但一开始的时候,你离那个极限其实远得很。

主持人:我知道像完全自动驾驶、SpaceX 的火箭也是类似的情况。马斯克给的时间线通常都比实际要长得多,所谓的 “马斯克时间” 可能只有真实周期的四分之一或者一半。但正因为一开始把时间线定得这么激进,事情反而真的快了好几倍。xAI 这边是不是也差不多?虽然现在更多是软件,但哪怕在数据中心这类硬件侧,感觉进展也快得离谱,而且基本都落在他最初说的那个时间范围内。

Sulaiman:我觉得他自己也在不断校准他的时间判断。毕竟现在马斯克已经在大规模部署各种各样的硬件了,所以他的估算明显比以前准很多。而且他更新时间线的频率也更高了,有时候甚至每天都在变。他会跟我们不断沟通,根据不同的参数来调整进度。

有些变化甚至是他那边直接带来的,尤其是在基础设施层面。比如某个交易提前敲定了,或者某批设备可以提前排进生产,那就可能直接省下一个月、两个月,甚至更多,具体要看部署的情况。软件这边其实也是一样。

他一直说的一句话是:你完全可以试着用一个月去做一件原本要一年才能做完的事,最后你可能两个月就搞定了,但那也已经快得多了。

主持人:我记得在 SpaceX 的早期,有一种内部共识:马斯克说每拖延一天,就相当于损失一千万美元的收入。我不知道在 xAI 是什么感觉,你心里会不会也有一种直觉:如果今天没有再 push 一点、没有把事情往前拱一步,就等于损失了多少本可以创造的价值?

Sulaiman:有的。至少在 Macrohard 这个项目上,我们确实有一些非常明确的收入目标。具体数字我不能说,但在我脑子里,只要一件事被延迟或者被加速,我几乎立刻就能算出来:我们刚刚是多赚了多少钱,或者少赚了多少钱。

主持人:这也太夸张了。

Sulaiman:是的,数字会非常大。一方面是因为预期回报本身就极高,另一方面是时间线实在太短了。所以哪怕只是几天的变化,按比例来看,对收入的影响都已经非常可观了。

主持人:马斯克一直以“快速下重注”闻名。有没有那种在一次会议里,就做出了投入巨大资本、时间或者承诺的决定?

Sulaiman:有一个非常典型的决定,就是在 Macrohard 上,我们选择了一条路线:模型的速度至少要比人类快 1.5 倍,而现在看起来,实际速度远远不止如此。

在其他实验室,类似“人类模拟器”的尝试,更多是走“更强推理能力、更大的模型”这条路。但我们当时的这个决定,几乎是完全走在了和所有人相反的方向上。之后我们做的几乎所有事情,基本都是这个决定的下游结果。虽然不能说百分之百,但它影响了绝大多数事情,而且这个决定是在非常早期就定下来的。

这在某种程度上也是一种共识,尤其是类比完全自动驾驶就很容易理解。没有人会等电脑花十分钟去做一件自己五分钟就能做完的事。但如果电脑十秒就能搞定,那我愿意为此付出任何价格。这其实是个非常直观的判断。

正常情况下,我们这些工程师可能会站出来反对,有二十个理由说明事情不能这么做。但当一个决定已经被拍板了,你只能从结果倒推路径,办法总会有的。

没有 AI 研究员, 就是工程师

主持人:我记得马斯克之前说过一次,好像是在 YC 的活动上,他和 Gary Tan 做问答。Gary 提到 AI 研究员这件事,结果马斯克说不存在什么 AI 研究员了,现在全都是 AI 工程师。

Sulaiman:对,我们跟他开过一次关于招聘的会,也有人提到过类似的话题,比如岗位描述之类的。然后他大概讲了十分钟,核心就一句话:工程师,就是工程师,别的都不重要。只要是好工程师,本质上是个会解决问题的人就行。不管你以前是做哪一块的,用过什么架构、做过哪种基础设施,这些都不重要。

主持人:为什么“工程师”这么重要?

Sulaiman:因为这样边界就被拉得很宽。意味着我们可以从很多不同背景的人里招人,现实中也确实是这样。AI 领域可能还不算特别明显,但 SpaceX 有很多这样的故事:有人来自你完全想不到的背景,按传统眼光根本不可能进来,但最后却在工程上做成了非常大的事情。所以定义宽一点,就等于给这些人留了一条路,也能帮助我们整体跑得更快。

“没人指挥你干这个、干那个”

主持人:那对你个人来说,在那工作最有意思的地方是什么?

Sulaiman:没人管我。真的,没人指挥你干这个、干那个。如果我有个好想法,通常当天就能自己动手把它做出来,然后拿去展示。看看合不合理,跑个评估,或者直接给客户看,给马斯克看,给相关的人看,一般当天就能知道这个方向对不对。

没有冗长的讨论,也不用等各种流程和官僚审批,我特别喜欢这一点。说实话,我从非常小的创业公司来更大的公司,本以为会牺牲一些自由度。我加入时公司 100 人, 是我之前公司的 10 倍。但对马斯克的公司来说算小的,确实感觉很小的公司,没有什么繁文缛节。

主持人:你进去之前,有没有什么特别大的预期,结果后来发现完全不是那么回事的?

Sulaiman:我原来以为会更“自上而下”一些,结果发现有一些,但不多。管理层级非常少,基本就三层:最底下是 IC,中间是联合创始人和一些新晋的经理,再往上就是马斯克,没有了。

现在每个经理下面的人都很多,事情反而很少是自上而下推动的。通常是我们自己先想出解决方案,跟经理对一下,马斯克点头,就直接干了。有反馈就再调整。整体比我想象中要“自下而上”得多。

主持人:感觉就是在刻意设计一种状态,让所有人都在做东西,管理者更少,真正的“建造者”更多。

Sulaiman:对。我刚加入的时候,几乎所有经理都还在写代码。现在有些人下面管着上百号人,写得少了一点,但总体上,大家还是工程师。

我记得第一周,有天吃晚饭,一个人坐我旁边。我就随口问他在哪个团队。他说他是做销售的,主要负责企业客户。我当时还想,“哦,原来是销售。”结果,他接着跟我讲他最近在训练的模型。

没错,销售也是工程师。销售团队全是工程师,几乎每个人都是工程师。那会儿公司里,可能真正不算工程师的人不到八个。即便如此,大家也都是在为同一台“机器”做贡献。

主持人:所以是不是更像这样:一个工程师负责一个项目,可以直接面对客户,理解他们的问题,然后快速实现解决方案?

Sulaiman:是的,而且层级越少,信息损失就越小。本质上是信息压缩的问题。语言本身就是有损的。如果信息要从客户脑子里变成语言,再进销售脑子,再变成语言、再到经理、再到工程师,每过一层,就像传话游戏一样丢一大截。如果你能尽量减少层级,那就只剩下一次压缩:客户直接告诉你他们要什么、体验是什么,然后工程师直接去解决。

主持人:有没有什么你以前在别的公司从没见过,但 xAI 在做的事情,能让事情推进得特别快?

Sulaiman:最让我意外的是团队之间、职责之间的“模糊性”。这在其他大公司,甚至规模差不多的公司里,都很少见。

比如我要修虚拟机基础设施的一个问题,我就直接修,修完给负责那块的人看一眼,对方说 OK,马上合并、上线。几乎没有那种严格的边界,大家基本都可以改任何东西。当然,危险的操作还是有检查的,但总体上,公司是信任你的,默认你会把事情做对。这种感觉真的很不一样。

主持人:我记得之前马斯克在搞 DOGE 的时候,删掉了一些防控措施然后又很快加回来了。在这种高速试错的过程中,有没有什么东西被删掉、又重新做回来的?

Sulaiman:几乎没有那种不可逆的破坏。我想不起来有什么东西是真的被永久性毁掉的。但像你说的,删掉、移除某个东西,然后有人说“我需要这个”,这种情况非常常见。可能一个小时后就回滚了。

也有那种情况,一个项目做了好几个月,依赖某块基础设施,结果等你真要上线的时候,那块基础设施已经被重构过三次了。那就再适配一次,继续往前走。

主持人:你觉得工程团队人这么少是件好事吗?

Sulaiman:绝对是。人越多,反而越慢。一个人能做完的事,两个人来做,往往要花两倍时间,这在任何规模下都成立。尤其是现在,你已经不需要像以前那样写那么多代码了,更多是在做决策、做架构设计。每个人都可以是架构师,不需要那么多“手”,一个大脑能做的事情多得多。

主持人:你之前自己也尝试过创业,做过很多不同的项目。是什么让你决定来这里?使命感也好,文化也好,哪一点真正打动了你?

Sulaiman:说实话,我一直是马斯克的粉丝。小时候第一次看到猎鹰火箭回收着陆,那种震撼真的忘不了。我后来还专门跑去看了 星舰的第五次发射,那次是第一次成功“接住”,真的值回票价,是我这辈子见过最酷的事情。所以只要能参与任何跟这些事情沾点边的东西,对我来说就已经非常有吸引力了。

主持人:那你当初为什么选择这家公司,而不是 SpaceX 或特斯拉?

Sulaiman:主要还是因为我骨子里就是个创业者吧。xAI 是这几家公司里规模最小、也最新的一家。我当时的一个判断,就是在这种体量的公司里,个人能产生的杠杆和改变会最大,事实也基本验证了这一点。因为从比例上看,你在公司里的“占比”更大。不是说其他公司不酷、或者个人不重要,而是这种比例带来的影响力不一样。

主持人:也就是说,对决策产生影响的可能性要大得多。

Sulaiman:甚至不只是决策,而是从想法到落地、到看到结果,速度都非常快。我之前以为很多事情自己单干会更快,比如自己做某个功能、跑某个实验。但现实是,在 xAI 反而更快,因为已经有现成的基础设施和团队,很多我本来要手动完成的步骤,他们早就做过了,而且基本没人会对你说“不”。

内部 AI 虚拟员工

主持人:你之前提到,公司里不同人、不同事情之间的边界其实挺模糊的。那你能不能随时去找其他同事帮忙?

Sulaiman:经常啊。基本就是走到别人桌前,直接说:“我有个问题。你现在在做什么?我能不能帮你一点?你能不能帮我这个?”大家都在同一栋楼里,这种事非常自然。

挺有意思的是,我们后来在公司内部测试“虚拟员工”(human emulator),有时候甚至没提前告诉大家,所以就会出现这种情况:有个真人员工在干活,突然有人找他说“你能不能帮我做这个”,虚拟员工就回:“行啊,来我工位吧。”结果那人真的走过去,发现什么都没有。

好几次我收到消息说:“组织架构里这个人向你汇报,他今天是不是没来?”但其实他是个 AI,是虚拟员工。

不过整体来说,大家默认都是在同一栋楼、随时能联系到的。所以互相求助这件事非常频繁。我可以找别人帮忙,别人也经常来找我。

主持人:那在这些过程中,最容易“翻车”或者最让你意外的点是什么?

Sulaiman:主要发生在“人类行为模拟”这块,尤其是和客户一起做的时候。我们会尽量全面地理解客户的工作内容:先聊天、访谈,让他们讲,或者写下来他们是怎么做这份工作的。再过一周,我们回头看虚拟员工犯的错误,发现它总是在某些特定场景出问题。

这时候我们就去观察真人是怎么做的,结果发现真实流程里其实有二、三十个步骤,对方之前完全没提。我们一问,他们就说:“哦对,这一步我们是这么做的,刚才忘了说,不好意思。”这种情况太常见了。

很多事情在人脑里是默认存在的,全靠“自动驾驶模式”在跑。就像你开车开了一小时,完全不记得自己刚才是怎么开的。人类对任何重复性的工作都是这样,而我们想解决的正是这些问题:把人类现在反复做、其实根本不需要人来做的“蠢活”,全部替掉。

主持人:那你是怎么决定“先解决哪一类问题”的?除了开车以外,人类还有哪些事情是天天在做、但其实没必要继续做的?

Sulaiman:只要是电脑上的重复性工作,基本都在这个范围内。比如客服就是一个特别典型的场景:不断接收各种格式、各种内容的用户输入,然后把它们转化成一个标准化的处理流程。这样人类就可以去做更有创造性、更需要大脑的事情。

这和编程领域发生的变化几乎是完全平行的:以前你要把同样的实现写二十遍,现在你用三句话描述一下,它就帮你搞定了,这是一次巨大的“压缩”。我们做的,其实就是把这种“压缩”,应用到所有数字化工作流上。

主持人:在公司内部推这些“虚拟员工”的时候,除了“人不存在但被叫去工位”这种情况,还有什么让你觉得意外的吗?

Sulaiman:意外的一点是,它的泛化能力比我们预期的强很多。有很多测试案例,模型根本没针对这个任务训练过,但表现却非常完美,远远超出我们的预期。因此,可以很确定地说,泛化效果真的比想象中好,而且我们现在还处在非常早期的阶段,之后只会越来越强。

这点其实和完全自动驾驶很像:有些场景并不在训练数据里,但车就是能正确应对。这本质上是一个“权重效率”的问题。

马斯克给反馈,

要么宏观、要么细节

主持人:你参加过几次和马斯克的会议?那种会议一般是什么样的?

Sulaiman:说实话都挺简单的,而且我运气不错,大多数都进行得很顺利。

主持人:在 SpaceX 这种地方,成本和零部件细节特别重要。但在你们这里,他给反馈时会不会不太一样?比如不会去抠每个流程的细节?

Sulaiman:他的反馈通常要么非常宏观,要么非常微观,很少停在中间。

宏观层面上,可能是产品方向、客户判断,比如“只专注这个细分市场”“这件事完全不要做”。微观层面,尤其是算力效率、延迟这些问题,他往往会给出非常具体的建议,比如“试试这个方案”。而且他是愿意被证明错的,但前提是要有证据,必须做实验、看结果,而不是靠观点对喷。有些实验的结果甚至会出乎所有人的意料,然后我们就顺着那个方向继续走。

主持人:所以你们后来选择小模型,而不是一味堆大模型。

Sulaiman:对,小模型在算力效率上的选择,带来了很多改进。有些是直接的,有些是间接的。最直观的当然是响应更快。但更重要的是,特斯拉在自动驾驶上也发现了同样的事:模型小了,迭代速度就快得多。

不仅模型对环境反应更快,部署新版本的速度也快了。以前可能四周一次,现在一周一次。这又反过来影响了实验方式:为什么我们能同时跑二十个实验,其实就是源于这个早期决策。

主持人:那一开始的设想,是不是想直接上大模型?

Sulaiman:算是吧。我们确实想比所有人都快,但后来发现,“快”这件事的效果,被放大了很多倍。

“war room”真实存在

主持人:维基百科一直被诟病有偏见,马斯克也很关注构建一个“更接近真实”的替代体系。那你们怎么看待清理互联网来找到真相这件事?

Sulaiman:这是个极其困难的问题,因为互联网本身往往并不是所谓的“事实真相”。我们能做的,是尽可能往“底层原理”去钻,但这本身也很难。比如你问“宪法在物理意义上的底层原理是什么”,这其实很难有人真正给出一个严谨的答案。

但思路是类似的:尽量往下挖,再从那里往上构建。问题是真正这样写、这样做的资料并不多。比较接近的一个例子,是 James Burke 的《Connections》系列,他会把看似完全不相关的概念,通过物理和发明串联起来,非常有意思。我们想做的,其实是类似的事情,只不过这条路还很新。

主持人:你们是怎么找到更好的数据的?

Sulaiman:数据并不是决定结果的唯一因素。

主持人:我有时候会在 X 上看到有人贴出 Grok 的输出,说“这明显不对”,然后马斯克直接回复说“我们会修”,接着可能过了十二个小时、一天,他又说“好了,已经修好了”。这种事情发生时,内部一般是怎么运作的?

Sulaiman:通常是他把哪里出问题了直接指给我们看,然后当时还醒着的人就会马上拉一个线程开始解决问题,一般先是个人处理,如果需要就再拉几个人。之后我们会做一次复盘,把到底哪里出了问题、以后怎么避免都讲清楚。原则上,犯一次错是可以接受的,但同样的错误犯第二次就很严重了。

主持人:在 SpaceX 的历史里,包括特斯拉,其实有过很多这种“冲刺时刻”。比如马斯克半夜突然出现,发一封全公司邮件,说大家都来公司干活。你们也有这种情况吗?

Sulaiman:这种更多发生在做大模型的时候。就 Macrohard 这个项目来说,我们已经在“作战室”里连续干了四个月了,基本一直就是这种状态。

主持人:你们门口是不是还真挂着一块牌子写着“war room”?

Sulaiman:是的,真的。最早那个作战室后来扩张了,我们就把东西全搬走了。有一次马斯克走进作战室,发现里面空无一人,就问“人呢?怎么回事?”然后他又走到我们现在待的地方,其实就是健身房,我们把健身器材全清掉,把人都塞进来了——然后他就在那儿开始一连串追问到底发生了什么。

主持人:在那种很多事情被打乱又被迅速推进的夜晚,或者经历那种大规模冲刺时,是什么感觉?

Sulaiman:我最近正好看到 xAI 的一位联合创始人 Igor 发的一条内容。他人特别好,我也很喜欢跟他一起工作。他以前在 StarCraft AI 工作,大概十年前吧,是我高中时尝试复现过的最酷的机器学习项目之一,难得要命,所以后来能和他一起共事真的挺神奇的。

他说的一句话我特别有共鸣:有些时间里,感觉只过去了几天;但有些夜晚里,仿佛发生了几个月的事情。那天晚上就是这样。说“几个月”可能有点夸张,技术结果我们本来也可能几周内做到,但一晚上把它搞出来,冲击感非常大,而且真的熬了一个通宵。

主持人:有没有那种情况,大家连续五天、甚至一整周都没怎么离开过办公室?

Sulaiman:有的。模型冲刺的时候,经常会有很多人直接在公司过夜。

主持人:之前提到你们有五、六个睡眠舱,大家轮着用?

Sulaiman:对,有睡眠舱,现在还有一些上下铺,条件差点,但至少能睡。后来帐篷那张照片传出来后,很多人都发给我。我只能说确实有帐篷,但我从没见过一次搭那么多。反正……确实挺极端的。

成长经历:从小不服权威

主持人:我知道你小时候做过很多不同的项目,好像还做过指尖陀螺。可能是在你房间里搞的?这种折腾、动手的心态,对你现在的工作影响大吗?

Sulaiman:影响挺大的。我很小就开始学编程,大概十一岁的时候,我爸给我买了一本书。我一开始觉得还行,但真正开始喜欢是在我意识到它能赚钱之后。我在网上认识了一些人,他们给游戏写脚本、外挂,然后卖一点钱。对我来说,能在网上赚到几百美元已经是天大的事了。

主持人:第一次有人给你钱,那种感觉真的很奇怪。

Sulaiman:太疯狂了。我还记得当时得让我爸帮我弄一个 PayPal 的托管账户之类的,然后钱真的打进来了。对我来说,那简直是世界上最酷的事情。我干了几个月,攒了点钱,当时我对 3D 打印特别着迷,RepRap 那套体系正火。

那其实就是一群大学生搞的项目,目标是造一台能打印出自己大部分零件的机器,所以才叫 RepRap。他们在不同大学里搞了一些实验室,从一台打印机开始,让它打印下一台的零件,一步步扩展。当然,这里面问题很多,他们也一直在解决,但那确实推动了后来的 3D 打印浪潮。我当时特别痴迷,就照着他们的零件清单,在阿里巴巴上把东西全买齐了。

主持人:然后呢?

Sulaiman:一个月后东西到齐了,我一晚上把它装起来,但过程其实挺惨的。我在拆电源的铜线,那是个非常不靠谱的电源,结果真的着火了。铜线全散开,有一根直接扎进我拇指里,大概有五厘米深。

主持人:去医院了吗?

Sulaiman:没有。那是个上学的夜晚,已经凌晨了。我十三岁,动手能力也不行,在卫生间用镊子折腾了一个小时也没拔出来,最后我干脆把露在外面的剪掉了。接下来几周,它一点点往外长,我每天早上再剪一点。现在想想还挺离谱的。

不过打印机最后还是装好了。那时候正好赶上指尖陀螺爆火。我从中国买了一千个滑板轴承,在自己卧室里搞了个小工厂。晚上每隔两个小时起来一次清理打印平台,重新打印一批陀螺。白天上学前,我在车库里装轴承、喷漆、晾干,然后跑去其他学校的公交站,把货卖给“分销商”,其实就是别的学校的学生。他们白天卖,我放学后收钱,线上也卖、发货。

生意做了两个月,最后被叫停了。官方理由是,学校餐饮公司有独家销售权,不能在校园里卖东西。但我觉得,他们主要是不爽我一边分散大家注意力,一边还赚钱。这事让我学到了一种“健康的不服从权威”。

主持人:这种对权威保持距离,好像一直贯穿你的经历。你提到你不太信任机构,这种态度是怎么形成的?在你的人生里具体体现在哪?

Sulaiman:我从很小就知道,我想要的是一种不寻常的结果,而走一条常规路径,基本不可能得到。于是我本能地抗拒一切“惯例”,而机构的本质就是维护惯例。我觉得,几乎所有真正有创造力、有意思的成果,都是来自自由的人。至少在我看到的世界里是这样。所以,忠于这一点,对我来说才是正确的选择。

主持人:我很喜欢 John Carlson 的一个观点:所有东西都这么难造、难实现。看看周围,世界就是充满人们的激情项目。

Sulaiman:对,完全就是个奇迹。每一样东西背后都有故事,比你想象的要多得多。我记得以前读过 YKK 拉链的故事。你会发现,全世界真正做得好的拉链厂商就两、三家。拉链看起来很便宜,但机械结构其实挺复杂的。之所以能这么便宜、这么可靠,是因为有极少数公司、甚至可以说是极少数人,花了几十年把这件事做到极致。

这几乎适用于所有东西。任何特别具体、又能大规模生产的东西,背后通常只有几家公司、甚至几个人在做。就像有时候你会听说,德国某个不起眼的小公司一停产,大众汽车整条产线都得停。疫情期间这种事就更明显了。

主持人:在我们见面之前,你还做了一个液体燃料火箭发动机,我记得很小一个,你说是临时起意,二十四小时内点火的?

Sulaiman:整个项目其实前后做了大概四周。一开始我就是买了一堆教材,研究火箭发动机的设计原理。和软件完全不一样,软件你可以上 GitHub 看别人的代码,但火箭没有现成文件。你得搞清楚材料特性、化学性质、怎么加工、参数怎么定,推力怎么估算,怎么避免超压。还有喷注器的设计,这个特别难,大概占了一半时间。

主持人:这是最难的部分吗?

Sulaiman:是的,喷注器最难,也是最后问题最大的地方。我花了三、四周时间,找中国工厂加急做了很多零件。那时候正好感恩节,我准备飞回东海岸看家人。我当时想,要么今晚把它装好、点火,要么就拖两周,然后我决定不能拖,就现在干。我早上灌了很多咖啡,一整天都在干活,搭测试架、装发动机,当晚就点火了。当然,为了能当晚完成,做了不少妥协。

主持人:我真的觉得特别好笑,你当时离它其实就几步远?

Sulaiman:对。我其实设计了远程点火,但问题是,用来给板载计算机供电的电源还没到,只能用笔记本通过 USB 供电。而我最长的 USB 线只有一米多,所以我只能站在旁边点火。我心里估计,大概有三成概率它会炸,或者喷得到处都是火。

视频里其实能看到,我的外套着火了。因为喷注器设计不好,产生了很多超压,没完全燃烧的乙醇直接喷出来,溅到我身上就点着了。那件烧焦的外套现在还留着,当纪念品了。

https://www.youtube.com/watch?v=8jN60eJr4Ps&t=41s

声明:本文为 AI 前线整理,不代表平台观点,未经许可禁止转载。

会议推荐

InfoQ 2026 全年会议规划已上线!从 AI Infra 到 Agentic AI,从 AI 工程化到产业落地,从技术前沿到行业应用,全面覆盖 AI 与软件开发核心赛道!集结全球技术先锋,拆解真实生产案例、深挖技术与产业落地痛点,探索前沿领域、聚焦产业赋能,获取实战落地方案与前瞻产业洞察,高效实现技术价值转化。把握行业变革关键节点,抢占 2026 智能升级发展先机!

今日荐文

你也「在看」吗?

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
地球上的动物都有天敌,那么人类有天敌吗?人类的天敌是什么?

地球上的动物都有天敌,那么人类有天敌吗?人类的天敌是什么?

宇宙时空
2026-01-20 18:35:09
不想谈稀土,“挨了中国一下,确实眼神清澈了”

不想谈稀土,“挨了中国一下,确实眼神清澈了”

观察者网
2026-01-21 16:13:08
内娱第一个为嫣然医院捐款的明星出现了,苗圃低调现身,正能量!

内娱第一个为嫣然医院捐款的明星出现了,苗圃低调现身,正能量!

小徐讲八卦
2026-01-21 15:46:55
特朗普为什么又要对伊朗动武?

特朗普为什么又要对伊朗动武?

天山箴言录
2026-01-21 18:41:04
看见佟丽娅大腿上那两道线条了吗?

看见佟丽娅大腿上那两道线条了吗?

小光侃娱乐
2026-01-03 15:40:02
广东两女子体力不支,被驴友抛弃荒野,遭遇惊魂一夜

广东两女子体力不支,被驴友抛弃荒野,遭遇惊魂一夜

南方都市报
2026-01-21 09:19:29
2-1惊险逆转!王欣瑜再进决赛冲冠:中国莎娃又美又能打

2-1惊险逆转!王欣瑜再进决赛冲冠:中国莎娃又美又能打

李喜林篮球绝杀
2026-01-10 17:21:22
西方恨得咬牙切齿!中国这个“优势”太恐怖了,照抄都没法

西方恨得咬牙切齿!中国这个“优势”太恐怖了,照抄都没法

毛豆论道
2026-01-12 18:36:27
广西一精神小妹结婚,身上多处纹身新郎小她10岁,网友:相当炸裂

广西一精神小妹结婚,身上多处纹身新郎小她10岁,网友:相当炸裂

唐小糖说情感
2026-01-07 16:37:28
从乌克兰到格陵兰:川普究竟想干什么?

从乌克兰到格陵兰:川普究竟想干什么?

难得君
2026-01-20 15:45:24
2026年春节,要暖到离谱!大年初一撞上七九,老辈人:60年头回见,今年逛庙会不用穿棉袄了

2026年春节,要暖到离谱!大年初一撞上七九,老辈人:60年头回见,今年逛庙会不用穿棉袄了

美食格物
2026-01-19 16:01:15
故事:女子鹤岗买120平房子养老,10年后回去,屋内景象让她愣住

故事:女子鹤岗买120平房子养老,10年后回去,屋内景象让她愣住

白云故事
2024-12-09 19:05:03
太惨了!商业航天妖股4跌停暴跌34%,前3个一字板让散户根本逃不掉

太惨了!商业航天妖股4跌停暴跌34%,前3个一字板让散户根本逃不掉

股市皆大事
2026-01-21 03:18:55
陈夏广出任中山市副市长

陈夏广出任中山市副市长

南方都市报
2026-01-21 18:30:09
刚刚,黄金,历史首次站上4800美元

刚刚,黄金,历史首次站上4800美元

吉刻新闻
2026-01-21 21:00:10
聂卫平遗产2亿!若无遗嘱由现任妻子+3子女平分 两任前妻分文没有

聂卫平遗产2亿!若无遗嘱由现任妻子+3子女平分 两任前妻分文没有

念洲
2026-01-20 10:10:42
1958年,张国焘请求中央给予他补助,毛主席同意,但提出一个条件

1958年,张国焘请求中央给予他补助,毛主席同意,但提出一个条件

帝哥说史
2026-01-17 06:40:03
西班牙高铁事故调查进行中!专家:一起由钢轨断轨引起的恶性事故

西班牙高铁事故调查进行中!专家:一起由钢轨断轨引起的恶性事故

第一财经资讯
2026-01-20 18:33:48
大变天!2026年SUV大降价来袭:燃油车成“重灾区”,最大降幅50%

大变天!2026年SUV大降价来袭:燃油车成“重灾区”,最大降幅50%

小怪吃美食
2026-01-21 04:58:16
三观炸裂!翟欣欣出轨聊天记录流出,尺度大到咂舌,判12年都嫌少

三观炸裂!翟欣欣出轨聊天记录流出,尺度大到咂舌,判12年都嫌少

有范又有料
2025-09-29 14:21:11
2026-01-21 21:31:00
AI前线 incentive-icons
AI前线
面向AI爱好者、开发者和科学家,提供AI领域技术资讯。
1259文章数 110关注度
往期回顾 全部

科技要闻

给机器人做仿真训练 这家创企年营收破亿

头条要闻

风波中的西贝股权发生变化 新荣记张勇对贾国龙伸援手

头条要闻

风波中的西贝股权发生变化 新荣记张勇对贾国龙伸援手

体育要闻

只会防守反击?不好意思,我们要踢决赛了

娱乐要闻

首位捐款的明星 苗圃现身嫣然医院捐款

财经要闻

丹麦打响第一枪 欧洲用资本保卫格陵兰岛

汽车要闻

2026款上汽大众朗逸正式上市 售价12.09万起

态度原创

时尚
手机
本地
健康
军事航空

新春穿搭新趋势,天猫服饰与百大品牌共同演绎新年吉服美学

手机要闻

iPhone 18系列再次被确认:不是左上角单挖孔,但价格要上涨!

本地新闻

云游辽宁|漫步千年小城晨昏,“康”复好心情

打工人年终总结!健康通关=赢麻了

军事要闻

特朗普:对美国的真正威胁是联合国和北约

无障碍浏览 进入关怀版