1成果简介
通过整合超级电容器与锌离子电池的优势,高性能锌离子混合超级电容器(ZHSC)的组装已成为推动新型能源被公众接受的高效策略。本文,安徽科技学院Erhui Zhang、唐婧 副教授团队在《Chemical Engineering Journal》期刊发表名为“Siloxene coupled graphene anode membrane with Zn-ion intercalation for all-solid-state Zn-ion hybrid supercapacitors”的论文,研究采用气相还原与Zn²⁺预插层相结合的方法,成功制备了石墨烯/硅氧烯-Zn²⁺负极(GS-Zn)膜。GS-Zn电极在50 mV·s⁻¹速率下展现出远高于石墨烯/硅氧烯阴极(GS)(116.0 F·g⁻¹)的比电容(148.0 F·g⁻¹),这归功于Zn²⁺的预插层效应。
此外,组装的全固态ZHSC电池在高达4800W·kg⁻¹的高功率密度下仍实现了40.8W·h·kg⁻¹的优异能量密度。同时,该锌氢混合电池展现出优异的电容稳定性(在8.0 A·g⁻¹条件下经10,000次充放电循环后仍保持92.6%的初始电容)。本研究成果为构建克服锌阳极缺陷的阳极膜材料奠定了基础,将推动锌氢混合电池在高电位应用领域的突破。
2图文导读
图1. Schematic diagram of preparation process of GS-Zn anode.
图2. (a) SEM images of GH and (b) GS-Zn2 at the same magnification. Elemental maps of GS-Zn2: (c) Overlay image, (d) C atoms, (e) Si atoms, (f) Zn atoms, (g) N atoms, (h) S atoms, (i) O atoms.
图3. TEM images of (a) siloxene, (b) GH, (c) GS2 and (d) GS-Zn2 at the same magnification.
图4. (a) XRD patterns and (b) Raman spectra for GO, GH, GS2, GS-Zn1, GS-Zn2, and GS-Zn3; (c) XPS survey results of siloxene, GO, GH, GS2, and GS-Zn2; High-resolution XPS spectra of (d) C 1 s, (e) Si 2p and (f) Zn 2p for GS-Zn2.
图5. Capacitance performance measurement of GS2 cathode in three-electrode system with 1.0 M Zn(CF3SO3)2 and 0.45 M H2SO4 aqueous liquid electrolyte. (a) CV curves against the potential windows varying from 0.2 to 0.8 V at 50 mV·s−1; (b) CV curves and (c) capacitances at the different scan rates; (d) GCD curves and (e) capacitances at the current densities varying from 0.5 to 6.0 A·g−1; (f) Contribution ratio of diffusion and capacitive processes in charge storage from 5 to 200 mV·s−1.
图7. Capacitance performance of ZHSC2 with the PVA/Zn(CF3SO3)2/H2SO4 gel electrolyte. (a) CV curves at different potential windows; (b) CV curves and (c) capacitances at the varying scan rates; (d) Capacitance contributions (shaded region) in the CV curve (blue line) at 100 mV·s−1; (e) Plots of log(peak current) against log(scan rate) at different scan rates; (f) Contribution ratio of capacitive capacity against scan rates; (g) GCD curves and (h) capacitances at the current densities varying from 3 to 8.0 A·g−1; (i) Ragone plot.
3小结
综上所述,我们通过气相还原与Zn²⁺预插层技术设计出新型GS-Zn阳极。该材料通过预插层Zn²⁺、N/S共掺杂及石墨烯片层上的硅氧烯修饰,实现了高效的Zn²⁺多吸附位点。此外,交织的石墨烯片层提供了快速的电子传输路径。这些特性使GS-Zn阳极克服了传统锌阳极的缺陷。基于该阳极组装的ZHSC2电容器展现出高比电容(3.0 A·g⁻¹条件下达115.0 F·g⁻¹),并在8 A·g⁻¹条件下经受10,000次充放电循环后仍保持92.6%的初始电容。此外,该ZHSC2电池在4800 W·kg⁻¹功率密度下仍展现出优异的能量密度(40.8 W·h·kg⁻¹)。本研究为高性能ZHSC设备开创了全新的负极设计策略。
文献:
https://doi.org/10.1016/j.cej.2025.168578
来源:材料分析与应用
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.