网易首页 > 网易号 > 正文 申请入驻

全球首次!上海AI实验室实现千里算力互联训练千亿模型,降低“卡脖子”风险

0
分享至

上海人工智能实验室于7月19日发布了一项具有里程碑意义的成果,其研发的DeepLink超大规模跨域混训技术方案,成功应用于中国联通网络,将相隔1500公里的两个异构智算中心“拼成”一个“超级节点”,并完成千亿参数的AI大模型训练。此举在全球首次实现长距离跨域异构智能算力的高效整合,不仅可化解全国算力资源分布不均、利用率不高的瓶颈,更可降低AI行业对特定芯片的依赖,一旦出现供应链波动,将为AI产业提供重要的兜底算力支持,避免被“卡脖子”。


据上海AI实验室介绍,今年2月,他们联合十余家合作伙伴,在上海建成了超大规模跨域混训集群的原型,实现了千亿参数大模型20天不间断训练。在此基础上,他们融合中国联通AINET算力智联网,跨越1500公里,连接了上海和济南之间的智算中心,完成了千亿参数大模型混训。

所谓“跨域混训”,就是将位于不同地域、使用不同芯片架构(即“异构”)的多个算力集群互联起来,“拧成一股绳”用于训练;与之相对的是“单集群+单芯片”训练。对AI大模型训练而言,“跨域+异构”的组合,看起来可以带来“1+1”的算力资源,但效果上却远小于“2”,甚至可能为“0”。此前,国内外尚无利用“跨域+异构”算力集群完成生产级模型训练的先例,原因在于互联技术障碍难以跨越,导致模型混训效率低下,难以为继。此次,上海AI实验室成功实现“零的突破”。实测数据显示,其与中国联通合作开展的跨域混训,等效算力高达单集群单芯片算力的95%以上。

过去几年,顺应AI大模型的爆发,国内算力建设如火如荼,但同时也存在区域算力资源分布和使用不均衡的情况,比如在西部一些地区,因为存在综合成本优势,超前部署了不少算力集群,但因为需求波动和运营问题,算力资源的实际使用率并不高,出现了一定程度的算力闲置。同时,随着AI芯片的快速迭代,以及国产芯片的百花齐放,各个智算中心使用的硬件架构也多有不同。由此,利用创新的标准和技术,整合和盘活跨域异构算力资源,变得越来越有战略价值。


上海AI实验室青年科学家、DeepLink系统团队负责人王辉告诉记者,DeepLink方案创新性地采用“3D+PS”的高内聚低耦合架构,某种意义上可以说是“以算法换带宽”。它将超大规模训练任务分发到远隔千里的各个智算中心,通过算法创新,有效减轻了对网络的压力;用户只需使用普通专线网络,就可开展大模型训练。此外,该方案还能确保在跨域训练中,即使某地智算节点发生故障,整体训练也能继续,显著提升了稳定性。

实际上,除了中国联通,上海AI实验室还与中国电信、商汤、仪电等智算平台进行了合作。其中,基于中国电信息壤算网,在不到10G带宽的网络条件下,实现了北京、上海、贵州三地智算中心的互联和大模型混训,等效算力依然在90%以上。王辉表示,理论上,DeepLink可通过动态配置支持数千公里的跨域混训,这意味着,国内任意两地的智算中心都可借助该方案实现算力整合。

中国联通研究院下一代互联网数据中心网络团队经理徐博华告诉记者,中国联通建设高通量、高性能、高智能的算力智联网AINET,研发了长距无损协议及硬件架构;DeepLink则在算法和软件层面实现一系列首创成果。这次“双向奔赴”的合作,为全国算力资源的高效利用带来许多想象空间。比如,它可将多地“碎片化”的算力捏合在一起,化零为整,变成高价值的资源。着眼将来,一旦规模达到目前10倍乃至更大的AI模型出现,对算力提出新的革命性需求,该方案也有可能让用户不必花天价新建超大型智算中心,而是通过将上一代智算中心进行“低成本组合”,满足训练需求。

上海AI实验室表示,下一步,他们还将进一步通过DeepLink超大规模跨域混训技术方案,组建算力生态,扩大应用范围,推动DeepLink方案能被更多服务商所整合,从而让用户可以像逛超市那样,在全国自由选择高质量、高性价比的算力供给,为全国算力一体化布局注入核心动能。同时,他们也会面向多元算力在AI大模型混合推理、分布式强化学习等需求,进一步完善技术方案。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
十五运会官宣:田径项目4x100米混合接力、4x400米混合接力将重赛

十五运会官宣:田径项目4x100米混合接力、4x400米混合接力将重赛

新快报新闻
2025-11-16 18:19:02
世上没有不透风的墙,陈梦首次回应与孙颖莎不和、王楚钦绯闻

世上没有不透风的墙,陈梦首次回应与孙颖莎不和、王楚钦绯闻

鋭娱之乐
2025-10-21 19:02:43
西贝“闭店潮”加速蔓延,贾国龙终究撑不下去了

西贝“闭店潮”加速蔓延,贾国龙终究撑不下去了

热点菌本君
2025-11-16 17:46:36
台立法院长韩国瑜出狠招,强势废除“台独党纲”,赖清德如何接招

台立法院长韩国瑜出狠招,强势废除“台独党纲”,赖清德如何接招

健身狂人
2025-11-16 12:53:00
全运会为何不见奖牌榜?原因就藏在“全”字中,两改变引关注

全运会为何不见奖牌榜?原因就藏在“全”字中,两改变引关注

篮球圈里的那些事
2025-11-16 12:34:59
第4名收官,辽宁男篮不敌四川 韩德君5分16篮板谢幕 周琦16+13

第4名收官,辽宁男篮不敌四川 韩德君5分16篮板谢幕 周琦16+13

替补席看球
2025-11-12 17:46:07
美国总统为啥从没召集过50个州长开全国大会?不是不想,是没资格

美国总统为啥从没召集过50个州长开全国大会?不是不想,是没资格

诗意世界
2025-11-14 15:52:24
从确诊到去世仅15天,“央视最帅主持人”的遭遇为人们敲响警钟

从确诊到去世仅15天,“央视最帅主持人”的遭遇为人们敲响警钟

银河史记
2025-11-03 19:31:33
新冠病毒3大结局已经不可避免,60岁以上的老年人尤其要注意

新冠病毒3大结局已经不可避免,60岁以上的老年人尤其要注意

医护健康科普
2025-08-31 17:07:58
《唐朝诡事录》各位演员的另一半,没想到春桃的前夫是豫津!

《唐朝诡事录》各位演员的另一半,没想到春桃的前夫是豫津!

卷史
2025-11-15 22:34:11
糖尿病离世的人越来越多!医生多次苦劝:少吃西红柿,多吃这6物

糖尿病离世的人越来越多!医生多次苦劝:少吃西红柿,多吃这6物

健身狂人
2025-11-12 14:10:12
追随蒋介石6年的郝柏村晚年称:蒋最大错误,就是接受雅尔塔协定

追随蒋介石6年的郝柏村晚年称:蒋最大错误,就是接受雅尔塔协定

我是斌哥哥
2024-04-06 10:46:20
34岁孙杨确认不会退役!1金1银告别十五运 20年坚守5战全运夺13金

34岁孙杨确认不会退役!1金1银告别十五运 20年坚守5战全运夺13金

风过乡
2025-11-16 19:57:19
为什么国务院和中央军委可以决定征召36周岁至45周岁男性服役?

为什么国务院和中央军委可以决定征召36周岁至45周岁男性服役?

混沌录
2025-10-20 19:44:05
摊牌了!72岁唐国强终于承认与刘晓庆的真实关系,曾志伟当场傻眼

摊牌了!72岁唐国强终于承认与刘晓庆的真实关系,曾志伟当场傻眼

小欣欣聊体育
2025-11-01 18:42:28
“狗主人有五次不死机会,他们还串供了”,来自李胜律师最新爆料

“狗主人有五次不死机会,他们还串供了”,来自李胜律师最新爆料

汉史趣闻
2025-11-16 17:22:09
高市早苗天塌了,中方重提“敌国条款”,或清算中日百年恩怨

高市早苗天塌了,中方重提“敌国条款”,或清算中日百年恩怨

历史求所知
2025-11-16 20:38:00
茼蒿立大功!医生调查发现:茼蒿对这5种疾病有好处,建议常吃

茼蒿立大功!医生调查发现:茼蒿对这5种疾病有好处,建议常吃

阿纂看事
2025-10-13 15:36:03
经济下行,这5大行业赚钱越来越难,这5大行业赚钱越来越容易

经济下行,这5大行业赚钱越来越难,这5大行业赚钱越来越容易

第一桶金学派
2025-11-14 10:36:33
你觉不觉得她,面相变了...

你觉不觉得她,面相变了...

BenSir本色说
2025-11-16 22:07:49
2025-11-17 04:28:49
文汇报 incentive-icons
文汇报
华语世界高品质人文阅读平台
263686文章数 309787关注度
往期回顾 全部

科技要闻

雷军,怒了!刚刚连发多条微博

头条要闻

中国公民需谨慎前往日本 四大原因披露

头条要闻

中国公民需谨慎前往日本 四大原因披露

体育要闻

最佳新秀候选!2028美国男篮有他一个位置

娱乐要闻

CEO爆料肖战《藏海传》狂赚几十亿!

财经要闻

房源暗中调价 央企举报广州国资房企

汽车要闻

"冰彩沙"全配齐 红旗HS6 PHEV预售17.88万起

态度原创

本地
游戏
艺术
时尚
公开课

本地新闻

沈阳都市圈“冷资源”点燃“热联动” “组团”北上“圈粉”哈尔滨

《纪元117:罗马和平》多人游戏问题大 育碧承诺修复

艺术要闻

这些获奖摄影作品,简直让人目不暇接!

秋天怎么穿出时尚感?避开老气的着装方式,美得自然又大方

公开课

李玫瑾:为什么性格比能力更重要?

无障碍浏览 进入关怀版