网易首页 > 网易号 > 正文 申请入驻

浅说椭圆曲线

0
分享至

在所有律师里面数学最好的是谁?毫无疑问是法国的费马——一位充满传奇色彩的业余数学家。他在数学领域做了许多重要的开创性工作,足以媲美任何同时代的数学家。至今,我们还常常能在数学课本中见到他的名字。

撰文 | 陆俊

1

费马先生的金蛋:椭圆曲线

在所有律师里面数学最好的是谁?毫无疑问是法国的费马(Pierre de Fermat)——一位充满传奇色彩的业余数学家。他在数学领域做了许多重要的开创性工作,足以媲美任何同时代的数学家。至今,我们还常常能在数学课本中见到他的名字。

比如说到解析几何,很多人只知道笛卡尔的大名,殊不知费马也是解析几何的创始人。他早就用坐标方法(即方程)去研究几何图形的性质。费马首先指出一次方程。

费马(1601-1665)

如果你是费马,有了这些发现之后,很自然会去思考三次方程定义的曲线,对不对?费马当然也会这么想。首先,在一个合适的坐标变换后,大多数三次方程可以写成标准形式

费马的许多研究都围绕着椭圆曲线。让我们循着费马的轨迹,一起来欣赏一下这些有趣的工作(有兴趣的读者可以参看加藤和也等人写的《数论I:Fermat的梦想和类域论》)。

(A) 立方数与三角数

所谓三角数,就是下面这类等边三角形上的格点个数:1,3,6,10,15,……。

(B) 直角三角形与同余数

所谓的同余数,来自于以下经典的数学问题。

有告诉人们一般情形证明是怎样的。此后的几百年,有许许多多优秀的数学家致力于证明这个结论,但他们的努力都失败了。直到1995年前后,才由数学家怀尔斯(Andrew Wiles)彻底解决。

怀尔斯(1953-)

虽然许多人证明费马猜想的努力都未获成功,但是他们的工作却在很大程度上促进了各个数学分支的发展,极大地丰富了数学世界的内容。因此有人把费马猜想比喻作“一只会生金蛋的鸡”,实在是非常地准确。

如今回过头来看,我们不得不问:对于如此之难的数学问题,为何费马会声称自己找到了证明?到底是费马跟我们开了玩笑,还是上帝跟费马开了玩笑?这里不做探讨了。我们想要告诉大家的是,费马猜想和椭圆曲线的关系是极为密切的。从某个方面说,椭圆曲线是不折不扣的“金蛋”!

让我们来看几个具体的例子。

限于篇幅,我们不再详细介绍。有兴趣的读者可以参看辛格所著的《费马大定理》或其他相关的科普书籍。

2

退化的椭圆曲线

这条曲线有一个尖锐的点,称作尖点(cusp)。顾名思义,这条曲线就好比是有理曲线上捏出一个尖点。

除了以上两种曲线,我们还把以下几类曲线都统称为退化的椭圆曲线:

(3) 三条直线的并集(即三条一次曲线的并集),

(4)一条圆锥曲线和一条直线的并集(即一条二次曲线和一条一次曲线的并集)。

从这个泛化概念上看,我们可以把直线和圆锥曲线也看作是椭圆曲线的一个部分。因此,可以预见,圆锥曲线的很多美妙性质应该都来自于椭圆曲线。事实正是如此。

3

名不副实:为什么叫“椭圆曲线”?

椭圆曲线的图形和椭圆显然没什么关系(见前面的图)那为什么我们要称之为“椭圆曲线”呢?

原来,当初人们想用微积分计算椭圆的周长(圆的周长大家都会求)。通过一定的积分技巧,最终要求出以下类型的积分:

么椭圆曲线的名字里包含“椭圆”二字。顺便说一下,上述积分是无法用初等函数的表达式计算出来的;而其本质原因和椭圆曲线的几何性质密切相关。

4

海底冰山:椭圆曲线隐藏的部分

回顾一下,椭圆曲线的两个例子

从第一张图,我们可以看到椭圆曲线的图形似乎可以分离成两个不相交的分支,第二张图则只有一个分支。是否还有许多其他的类型呢?确实如此。牛顿曾经对椭圆曲线做了很细致的分类,将它们分成了数十种类型。

为什么直线和圆锥曲线只有区区几种类型,而椭圆曲线种类一下子增加很多呢?让我们先想象一个情景:在宽阔的海平面上露出一处礁石。如果海平面降低的话,礁石就会变大,可能会形成一座小山;如果海平面继续下降,本来的一座小山可能会变成许多座互不相连的小山;随着海平面下降,小山们变成了一座座小岛,有些本来不相连的岛甚至可能会连接起来。假如我们抽干所有的水,那么你会发现所有的岛其实只不过是同一块陆地的不同部分。

这样一来,你看到的椭圆曲线实图形其实只是整个椭圆曲线中的很少一部分,大部分都隐藏在实坐标平面背后。海面上的岛屿千差万别,但实际上无非是同一块陆地的不同部分。这就是我们所要的答案——有点类似于“盲人摸象”的典故。

上面的讨论告诉我们,如果仅考虑实数情形的话,我们其实损失掉了很多有用的几何信息。仅考虑实数平面图形显然是一个不必要的思维枷锁。因此我们完全可以放弃掉这一假设,即允许

便,人们仍然习惯于用实数平面的图形作为椭圆曲线的示意图——上一节的几张图都是这样。以后我们谈到椭圆曲线就默认它是在复数坐标上的。

接下去的问题就来了:这样的椭圆曲线的图形到底是什么呢?它当然不再是我们前面看到的实曲线的样子了。事实上,它是四维空间里的一个环面!所谓环面,就是指如下的救生圈:

四个变量满足两个方程,这就意味着其中有两个变量是独立的,它们可以表达出剩下的两个变量。从几何上说,这就是指椭圆曲线的图形是个曲面。

至于为什么它是环面,这可不是三言两语能说清楚的。它涉及到复变函数和拓扑学的一些简单技巧,我们这里不再详细解释了。有兴趣的读者可以参看伏•巴尔佳斯基写的一本极有趣味的科普书——《拓扑学奇趣》。

尽管扩充到复数域上的椭圆曲线是环面,但是我们仍然称呼它为“曲线”,毕竟它在实数坐标平面上的图形仍然是曲线——示意图仍以实图形为标准。我们也可以把它想象成是复数坐标下的“曲线”,即复一维图形。

5

举一反三:退化的椭圆曲线是什么图形

好奇的读者可能会问:按照上面的办法,我们也能够把直线和圆锥曲线扩充到复数情形,那么它们是四维空间中的什么图形呢?答案是:它们都是球面。(作者按:它们是球面的原因来自于所谓的球极投影,以后将撰文介绍,这里不再详细解释了)

既然如此,直线和圆锥曲线岂不是一样了?事实正是如此!我们平时之所以看着它们觉得不一样,除了上面说的原因之外,还有一个原因,就是我们没有把曲线上的无穷远处的点放进曲线——射影几何中这样的无穷远点都是作为通常的点来看待的。一旦我们把这些所谓的“虚无飘渺”的无穷远处的点加进去,你就会发现它们完全是一样的。事实上,上一节的讨论中,我们也默认了这一点。

很显然,球面和环面有着本质的差别,环面中间有一个洞眼而球面却没有——这种洞眼数学上叫做亏格。因此椭圆曲线要比圆锥曲线及直线复杂得多。前面我们讲的椭圆周长积分——实际上可以看成环面上的积分。这里插一句,我们古典的数学分析实际上都是在平直的空间上(直线、平面……)建立微积分的理论。因此我们当然也可以在弯曲的空间(环面)上建立微积分。

聪明的读者一定也会想到,退化的椭圆曲线扩充到复数情形,又是什么图形呢?比如

(1) 三条直线的并集(如图)

因为每条直线相当于球面,所以三条直线相当于三个球。又因为我们把无穷远处的点考虑进来了,因此任何两条直线都要相交,这样就得到上图的样子。(作者按:其实还有三条直线交于一点的情形,这里我们没有画出来)

为什么我们说这样的图形是退化的椭圆曲线呢?我们将上面的三个球相切点替换成很细小的管子,将这三个球内部连通起来,

然后对这个容器内充气,这就膨胀成一个环面咯!

你把这个过程倒过来放,就是我们通常说的退化了:从环面退化成三个球。

(2) 带结点的有理曲线

这看上去就像香蕉,只不过两头接在一起——接触点就是我们说的结点。显然,当你弹开这个结点,并对香蕉充气,就得到球面了——也就是有理曲线。

(3) 带尖点的有理曲线(下图为尖点附近的局部图)

6

遗传基因:椭圆曲线的j不变量

前面我们给的椭圆曲线方程,是所谓的魏尔斯特拉斯标准方程(这就类似于椭圆、双曲线、抛

如果一条椭圆曲线能够在坐标变换下,变成另一条椭圆曲线(即方程在坐标变换下可以从一个变到另一个),我们就认为这两条椭圆曲线是相同的——这就类似于平面几何中两个三角形相似。

一个有趣的问题是:我们如何能够从方程直接判断出两条椭圆曲线是否相同呢?答案出乎意料地简单。为此我们引进一个数值,这个数值就好比椭圆曲线的基因,它完全确定了椭圆曲线的性状。

考虑椭圆曲线E的魏尔斯特拉斯标准方程如上,我们定义该椭圆曲线的j-不变量

我们现在给出上述问题的回答:

两条椭圆曲线相同的充分必要条件就是它们的j不变量相等。

有了这个结论,你可以轻松判断任何两个椭圆曲线是否相同,不妨找几个例子试试吧。

7

椭圆曲线的拐点

在古典解析几何中,人们关心曲线上每个点的切线,比如圆的切线等等。我们首先想要知道如何说明切线和曲线相切的密切程度。这里有个很简单的直观方法。

一条曲线上的大部分点的相切数都是2,但是有一部分点的相切数至少是3。这样的点我们称其为拐点

椭圆曲线上有且仅有9个拐点!并且这些拐点相切数恰好都是3。

还有更有趣的结论:

存在12条直线过这9个拐点,并且每条直线经过其中3个拐点。

此外,任何两个拐点的连线必定经过第三个拐点。

请注意:圆锥曲线不存在拐点。

8

椭圆曲线的交点

这个证明很有启发性。假如你想考虑任何两条曲线(方程次数可以超过三)的交点个数,用类似方法很容易得到一个优美的答案——这就是著名的贝祖定理(Bézout's theorem)。有兴趣的读者可以自己试着寻找一下答案是什么。

这里我们罗列几条这样的结论:

(1)一条椭圆曲线和一条圆锥曲线相交6个点。

(2)一条椭圆曲线和一条直线相交3个点。特别地,这就是为什么椭圆曲线拐点处的切线有相切数3。

再来一个更神奇的结论——夏莱定理(Chasles' theorem)

这个定理异常地彪悍,因为它能推出许许多多平面射影几何中有关共点共线的著名定理。

我们下一节再来展示它的这一系列应用。

证明夏莱定理可没上面的贝祖定理那么简单了——尽管证明也是初等的。事实上,这个定理只不过是诺特定理(Noether's theorem)的一个特殊情形而已。这里的诺特可不是女数学家艾米•诺特(Emmy Noether),而是她的父亲,代数几何古典学派的重要奠基人之一——马克思•诺特(Max Noether)。

马克思•诺特(1844-1921)

艾米•诺特(1882-1935)

这里请允许我再多说两句:一条曲线是否通过另外两条曲线的交点这类性质称作凯莱-巴卡洛克性质(Cayley-Bacharach Theorem)性质,这种性质在平面几何中就是我们说的共点共线问题。这些性质背后隐藏着很深刻的数学背景,和许多重要的数学理论密切关联。

9

夏莱定理的威力

其实夏莱定理很少在平面几何中被提及。这是因为平面几何主要关心直线和圆锥曲线的问题,不会涉及椭圆曲线。但是我们知道,椭圆曲线可以退化到直线和圆锥曲线。这种退化不会影响上一节的所有结论,因此我们可以将这个定理改头换面与射影几何对偶原则配合,由此演变出许多著名的平面几何定理。这里试举几例。

巴布斯定理(Pappus's theorem)

并应用夏莱定理即可证明该结论。

三弦共点定理

10

结束语

我们这篇文章就写到这里。这些有趣的性质只不过刚刚揭开了椭圆曲线的冰山一角。它们只是整个椭圆曲线理论中的序曲罢了。将来有机会,我将继续介绍椭圆曲线的其他有趣内容。我在这里首先感谢谈胜利教授曾经提供的椭圆曲线演讲稿和硕士生基础课《代数几何基础》讲义草稿——许多图片和素材都取自于它们。其次要感谢洪渊老师、梁科老师和顾琦老师的指点与鼓励。在这里,我还要特别感谢洪渊老师。他在百忙之中抽空与我详细耐心地讨论,提出了很多重要的修改建议,使我对科普写作有了更多的理解和认识。

作者简介

陆俊,时为华东师范大学数学系讲师,代数几何方向,师从谈胜利及陈志杰教授。

本文经授权转载自微信公众号“数学文化”。

特 别 提 示

1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。

2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
海南“封关”,美国和新加坡竟然没有发声?

海南“封关”,美国和新加坡竟然没有发声?

流苏晚晴
2025-12-24 18:12:19
被美国关了一个多月,马杜罗想清楚了,委内瑞拉就该走现在的路

被美国关了一个多月,马杜罗想清楚了,委内瑞拉就该走现在的路

流年顛簸
2026-02-15 02:47:36
变脸比翻书快!卢比奥慕尼黑“爽约”,欧洲盟友被美国坑惨了?

变脸比翻书快!卢比奥慕尼黑“爽约”,欧洲盟友被美国坑惨了?

解锁世界风云
2026-02-15 10:53:36
噩耗!安徽 22 岁小伙巴厘岛溺亡,同伴见死不救,家属曝猛料,网友:不同情

噩耗!安徽 22 岁小伙巴厘岛溺亡,同伴见死不救,家属曝猛料,网友:不同情

王二哥老搞笑
2026-02-15 01:00:43
王毅就中日关系重申严正立场

王毅就中日关系重申严正立场

每日经济新闻
2026-02-14 22:28:15
2026年的春运,长途大巴结结实实给了“智能时代”一记耳光

2026年的春运,长途大巴结结实实给了“智能时代”一记耳光

老特有话说
2026-02-09 23:34:10
年产能100万台!马斯克:擎天柱机器人2027年颠覆现状

年产能100万台!马斯克:擎天柱机器人2027年颠覆现状

快科技
2026-02-15 11:37:05
Rip谈如今的活塞:要脱帽致敬 他们没有拿队中的年轻球员去换巨星

Rip谈如今的活塞:要脱帽致敬 他们没有拿队中的年轻球员去换巨星

仰卧撑FTUer
2026-02-15 10:41:07
薄一波打断原副总理姬鹏飞的电话,说:别执迷不悟,他罪该万死

薄一波打断原副总理姬鹏飞的电话,说:别执迷不悟,他罪该万死

抽象派大师
2026-01-26 19:07:26
880年,黄巢率兵攻入长安:将所有权贵门阀满门抄斩,一个不留!

880年,黄巢率兵攻入长安:将所有权贵门阀满门抄斩,一个不留!

南权先生
2026-02-13 15:24:25
2026年新名词:贷款卖房?一套房亏180万

2026年新名词:贷款卖房?一套房亏180万

恪守原则和底线
2026-02-14 06:55:05
1982年陈云在一份简报上批示“我主张严办”,邓小平看后十分赞同

1982年陈云在一份简报上批示“我主张严办”,邓小平看后十分赞同

元哥说历史
2026-02-15 11:10:03
7-5,6-1!吴易昺开门红:资格赛首战告捷,PK赛会4号种子冲正赛

7-5,6-1!吴易昺开门红:资格赛首战告捷,PK赛会4号种子冲正赛

刘姚尧的文字城堡
2026-02-15 09:52:13
高云翔现状:45岁发福不刮胡,定居天津有新家庭,今生活天差地别

高云翔现状:45岁发福不刮胡,定居天津有新家庭,今生活天差地别

查尔菲的笔记
2026-02-14 18:04:28
差距太明显!米切尔最高71分力压哈登61分,季后赛57分更是完胜

差距太明显!米切尔最高71分力压哈登61分,季后赛57分更是完胜

郝小小看体育
2026-02-15 07:35:36
赚美国钱回中国花?卷走美百亿巨款被判465年,他堪称最牛企业家

赚美国钱回中国花?卷走美百亿巨款被判465年,他堪称最牛企业家

嫹笔牂牂
2026-02-09 14:19:54
完了,全完了。澳门英皇宫殿一年净亏2.48亿,彻底崩了。

完了,全完了。澳门英皇宫殿一年净亏2.48亿,彻底崩了。

流苏晚晴
2026-02-12 17:03:00
钱再多有什么用?52岁刘强东上千亿身家,儿子却是他一生的遗憾

钱再多有什么用?52岁刘强东上千亿身家,儿子却是他一生的遗憾

墨印斋
2026-01-31 16:37:48
进球机器,凯恩已连续三个赛季为拜仁打进40+球

进球机器,凯恩已连续三个赛季为拜仁打进40+球

乐道足球
2026-02-15 10:26:23
中国游客在韩入住10米超长大床房,除夕夜房价超五千元,酒店:由8张双人床拼成,最多可入住4人

中国游客在韩入住10米超长大床房,除夕夜房价超五千元,酒店:由8张双人床拼成,最多可入住4人

极目新闻
2026-02-14 16:09:44
2026-02-15 12:04:49
返朴 incentive-icons
返朴
科学新媒体“返朴”,科普中国子品牌,倡导“溯源守拙,问学求新”。
4093文章数 15887关注度
往期回顾 全部

教育要闻

新春走基层 | 加拿大外教扎根淄博十余年 逛大集办年货感受中国年

头条要闻

男子卖房前一夜被买家再砍40万 使出一招后买家傻眼了

头条要闻

男子卖房前一夜被买家再砍40万 使出一招后买家傻眼了

体育要闻

最戏剧性的花滑男单,冠军为什么是他?

娱乐要闻

河南春晚被骂上热搜!大量广告满屏AI

财经要闻

谁在掌控你的胃?起底百亿"飘香剂"江湖

科技要闻

发春节红包的大厂都被约谈了

汽车要闻

奔驰中国换帅:段建军离任,李德思接棒

态度原创

数码
教育
旅游
亲子
公开课

数码要闻

AirTag太贵?小米Tag来了:更薄更强,还支持苹果查找

教育要闻

旋转作图第3讲,一个视频学会!

旅游要闻

马年春节游乐场嗨玩指南:尽兴玩 安全不掉线!

亲子要闻

小婴儿第1个年怎么过?儿科医生:答案只有一个字,妈妈必须重视

公开课

李玫瑾:为什么性格比能力更重要?

无障碍浏览 进入关怀版