我们通过眼睛窥见世间万物,但人眼的分辨率终究是有限的。我们可以看清窗户上的一只蚂蚁,但却看不到组成这只蚂蚁的一个个细胞。好在,显微镜的出现让我们开始接触细胞层面的微观世界;而探索更细微的核糖体、微管等超微结构,则需要更先进的高分辨率荧光显微镜与电子显微镜。
在这样的背景下,接下来的这段设想简直是不切实际:一枚直径40微米的普通细胞,我们用肉眼就能看清基本结构;同时,普通的光学显微镜也能“平替”那些昂贵的仪器,研究其中的超微结构特征。
但科技的发展,就是实现一个个“不可能”的过程。现在,耶鲁大学细胞生物学教授Joerg Bewersdorf带领团队,为我们表演了一场放大细胞的“魔术”。通过对细胞的“膨胀-染色”两步改造,细胞体积被放大至少8000倍,变得肉眼可见,并且普通显微镜能够看清细胞的超微结构。这项新技术带来的不仅是视觉奇观,还有望将前沿的生物学研究带到更广泛的地区。
▲通过最新研究的不透明显微成像技术,我们可以用肉眼看见细胞结构(图片来源:Ons M’Saad)
这项突破的起点,要从2015年的一项研究说起。当时,作为开创了光遗传学领域的先驱之一,麻省理工学院的Edward Boyden教授在《科学》杂志上发表了另一项开创性的新发明:膨胀显微成像技术(Expansion Microscopy)。
这项技术首先在聚阴离子水凝胶的帮助下,将荧光标记的生物样本放大;接下来利用荧光显微技术观察放大后的样本。这样一来,最终的放大倍数就是物理放大与显微镜光学放大倍数的乘积。
▲利用膨胀显微成像技术看见的小鼠脑组织(图片来源:参考资料[3])
在这项技术的基础上,Bewersdorf教授开始设想新的可能性。以普通的海拉细胞为例,如果能够将细胞直径放大20倍,也就是细胞体积膨胀8000倍,那么理论上来说,肉眼就足以看见细胞的结构。
当然,这里有一个障碍需要解决:在膨胀的细胞里,蛋白质也被稀释了8000倍。这时的细胞虽然足够大了,但肉眼却无法将细胞组织从背景中区分出来。因此,要用肉眼捕捉细胞,还需要想办法提升样本的可见度。
基于这两点,Bewersdorf教授团队开发出了全新的不透明显微成像技术(Unclearing Microscopy)。简单来说,这项技术对细胞样本进行了两项关键的处理:让细胞膨胀,以及给细胞染色。
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.