传统的“探测—识别—跟踪”流程,是建立在目标可被感知的信号强烈,探测难度低于识别难度,识别难度低于跟踪难度的基础之上的。考虑到“低慢小”无人机自身及所处环境的特殊性,“多目标跟踪—识别— 筛选”成为破解“低慢小”无人机探测难点的一种新思路。在这一思路下,探测网络所接受到的信息可以尽可能地扩大,并可以融合其它先验信息(如地图、天气、网络状况等),对于捕捉到的目标信息进行无条件地跟踪,通过跟踪所得的数据积累,进行目标筛选。可行的方案有:
1) 基于运动模型识别的跟踪探测。例如,将一段时间内匀速直线运动与变速运动的切换次数作为特征,可以区分大多数鸟类和无人机。
2) 基于深度学习的跟踪探测。虽然当前所使用的训练数据集多为包含清晰目标、背景为简洁的蓝天或机场的各类飞机图片,与实际探测中可能采集到的目标无人机图像相差较大,因而模型的泛化能力存在问题,但是却验证了基于学习的识别探测的可行性。随着真实数据的不断累积,模型的可靠性也将越来越高。
3) 基于声音、无线电、雷达信号的跟踪探测。影响声音特征的因素包括:无人机类型、无人机运动状态、无人机与探测器的相对位置。因此,在近距范围内采用声音识别跟踪探测,不但能够有效定位目标无人机,还能够获得更多与反制相关的信息。雷达可用于识别“低慢小”无人机的特征主要是由旋翼等无人机自身内部的运动造成的微多普勒特征。
融合语义地图的跟踪识别探测。这一方法将探测目标的位置信息与标注了特定语义的地图进行匹配, 通过模拟人结合地图依据一定的规则进行识别,实现对目标的识别探测。这一方法需要解决语义地图和规则集的设计问题。
综合来看,先跟踪后识别的思路,虽然表面上牺牲了系统响应时间,但是考虑到“低慢小”无人机本身运动速度有限,其所执行的任务多数也都要求低速或悬停,因而仍然有可能有效终止威胁。如何平衡虚警率和漏检率、响应时间与识别精度,是一个关键问题。
将“低慢小”无人机探测问题放在“低慢小”无人机管控与反制的整体视角下审视,可以发现,“低慢小”无人机探测问题是可解的。“低慢小”无人机的“隐身” 特性客观存在,但这同时使得其所执行任务的烈度降低。因此,从终止“低慢小”无人机从事的破坏活动这一目标出发,不仅传统探测技术不能直接应用在“低慢小”无人机探测上,而且传统探测性能指标也没有必要直接套用。
本文在全面梳理“低慢小”无人机探测方法的基础上,对各种探测原理进行分析比对,结合市场信息、实验研究、仿真验证等信息,总结出解决“低慢小”无人机探测问题的三个发展趋势:移动探测、融合探测和跟踪探测。
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.