NF-κB信号通路是调节细胞免疫应答与炎症反应、细胞存活与增殖的核心通路之一。NF-κB家族由多个成员组成,包括p50、p52、p65(RelA)、RelB和c-Rel等。这些成员通过形成同源或异源二聚体发挥功能:结合到靶基因启动子区域的κB位点,调控基因表达,其中p50/p65异源二聚体是最常见且研究最广泛的组合形式。NF-κB通路的发现距今已有近40年历史,在此期间围绕该通路开发了一系列小分子抑制剂,它们为探究NF-κB通路的生物学功能、研究该靶点相关疾病的机理作出了重大贡献。
![]()
图 1经典与非经典的NF-κB通路[1]
1.BAY 11-7082 (BAY 11-7821)
BAY 11-7082(NF-κB inhibitor 13,AbMole,M2040)是一种经典的NF-κB通路抑制剂,主要通过阻断IκB激酶(IKKβ)的活性,从而阻止IκBα的磷酸化和降解,最终抑制NF-κB p65亚基的核转位。BAY 11-7082还是一种泛素化系统的抑制剂,可通过抑制E2连接酶(如Ubc13和UbcH7)和E3泛素连接酶(如LUBAC)来阻止线性多泛素链的形成[2]。此外,BAY 11-7082还能直接抑制NLRP3炎症小体的组装及其下游效应分子(如caspase-1、IL-1β和IL-18)的释放[3]。BAY 11-7082具有显著的抗炎活性,大鼠实验显示,BAY 11-7082可缓解实验性自身免疫性神经炎(EAN)的症状,其机制涉及降低M1型巨噬细胞的比例和促炎细胞因子表达[4]。在银屑病样皮炎小鼠模型中,BAY 11-7082(CAS No.:19542-67-7)通过同时抑制NF-κB和NLRP3炎症小体,显著改善皮肤炎症[5]。此外,BAY 11-7082(BAY 11-7821)在高脂饮食诱导的代谢紊乱小鼠中,能降低肝脏和肾脏中NLRP3、caspase-1及IL-1β的水平[6]。BAY 11-7082还可诱导肿瘤细胞的凋亡,例如诱导多药耐药白血病T细胞系的凋亡[7]。
![]()
图 2. AbMole的BAY 11-7082(BAY 11-7821,AbMole,M2040)被用于抑制NF-κB p65亚基入核[8]
2.JSH-23
JSH-23(AbMole,M2786)是一种核因子κB(NF-κB)通路的抑制剂,IC50为 7.1 μM,与BAY 11-7082类似,也通过靶向NF-κB p65亚基的核转位发挥调控作用。JSH-23可通过抑制NF-κB信号通路的激活,从而下调促炎因子(如IL-6、TNF-α)的表达。JSH-23在LPS(Lipopolysaccharides,脂多糖)诱导的脓毒症模型小鼠中,JSH-23(3 mg/kg)通过抑制NF-κB通路减轻了心脏损伤,并减少了M1型巨噬细胞极化[9]。JSH-23(CAS No.:749886-87-1)在SD大鼠骨质疏松模型中通过TRAF6/Rac1/NOX1通路抑制破骨细胞分化,同时增强成骨细胞的Nrf2/HO-1表达以维持骨稳态[10]。JSH-23也具有抗肿瘤活性,它可抑制MDA-MB-468三阴性乳腺癌细胞的增殖与迁移,并在HepG2肝癌细胞中通过诱导G2/M期阻滞抑制细胞生长。JSH-23在阿尔茨海默病相关研究中,可恢复Aβ肽注射后的大鼠海马CA1锥体神经元的电生理特性,逆转异常增强的Ih电流[11]。这些研究共同表明,JSH-23作为NF-κB通路的工具分子,在炎症调控、肿瘤干预、神经保护及骨代谢研究中具有重要价值。
![]()
图 3. AbMole的JSH-23(AbMole,M2786)抑制RAW264.7细胞中的NF-κB通路的激活和细胞因子mIFN-β的释放[12]。
3.QNZ(EVP4593)
QNZ(EVP4593,AbMole,M2298)是一种NF-κB抑制剂,可抑制 NF-κB 的转录调节活性(IC50为11 nM),QNZ通过靶向抑制p65蛋白(RelA亚基)发挥调控作用。EVP4593可在大鼠肺组织中抑制TLR4/MyD88/NF-κB信号通路,进而调控肺部的炎症反应。此外,EVP4593还是一种能够抑制Orai(钙释放激活钙通道)和TRPC(经典瞬时受体电位离子通道)的化合物,同时对SOCs(内源性储存操作钙通道)也表现出抑制作用[13]。QNZ(CAS No.:545380-34-5)不仅通过调节上述离子通道在亨廷顿病(HD)研究中有效降低突变型亨廷顿蛋白水平,还在诱导多能干细胞(iPSCs)分化的神经元模型中表现出神经保护作用[14]。
![]()
图 4. AbMole的QNZ(1 mg/kg/d)(EVP4593,AbMole,M2298)被用于小鼠注射以调控NF-κB信号通路[15]
4.Andrographolide(穿心莲内酯)
Andrographolide(ANDRO,穿心莲内酯,AbMole,M6444)是一种从植物穿心莲(Andrographis paniculata)中分离的二萜内酯化合物,具有抗炎、抗肿瘤、抗氧化等多种生物活性。Andrographolide(Andrographis)还是一种NF-κB信号通路的抑制剂,可通过共价修饰p50 的半胱氨酸残基,抑制NF-κB的激活。Andrographolide(CAS No.:5508-58-7)在Toll样受体(TLR)信号通路中,抑制TLR3和TLR4诱导的NF-κB活化,能显著降低COX-2等促炎因子的表达[16]。另外,Andrographolide还能直接干扰NF-κB与DNA启动子区域的结合,从而阻断下游促炎基因的转录[17]。
5.Dehydroxymethylepoxyquinomicin(DHMEQ)
Dehydroxymethylepoxyquinomicin (DHMEQ,AbMole,M11454)是一种基于微生物次级代谢产物Eepoxyquinomicin C的结构设计合成的特异性NF-κB抑制剂[18]。DHMEQ(CAS No.:287194-40-5)主要通过环氧基团与NF-κB组分中特定半胱氨酸残基的SH基团结合,从而阻断NF-κB的DNA结合能力,抑制其转录活性[18]。DHMEQ作为特异性的NF-κB抑制剂,在探究NF-κB与炎症/肿瘤的相关信号网络方面具有重要价值[19]。例如DHMEQ可增加前列腺癌细胞对放疗的敏感性[20],以及在胰岛组织的小鼠移植模型中降低组织损伤[21]。
6.IMD-0354
IMD-0354(AbMole,M2769)是一种小分子IKKβ抑制剂,通过选择性阻断IKKβ活性,有效抑制经典NF-κB信号通路的激活[22]。IMD-0354(IKK2 Inhibitor V)的应用广泛,覆盖炎症、肿瘤及代谢研究。在细胞模型中,IMD-0354能有效抑制多种肿瘤细胞(如肺癌细胞、黑色素瘤细胞)的增殖,并通过阻断NF-κB依赖的MET激活,增强细胞对凋亡的敏感性[23]。IMD-0354还在小鼠过敏性炎症模型表现出抗过敏和抗炎效果,其核心机制同样依赖于对NF-κB通路的抑制[24]。
![]()
图 5.AbMole的IMD-0354(AbMole,M2769)在AT2细胞中成功抑制了NF-κB信号通路。
7.Caffeic Acid Phenethyl Ester(咖啡酸苯乙酯)
Caffeic Acid Phenethyl Ester(CAPE,咖啡酸苯乙酯,AbMole,M2484)是一种从蜂胶中提取的生物活性多酚酯,具有广泛的科研应用价值。其作用机理主要涉及抗氧化、抗炎、抑制NF-κB信号通路等。CAPE可在微摩尔浓度下抑制NF-κB通路,降低炎症因子的表达,因此具有强大的抗炎活性。例如Caffeic Acid Phenethyl Ester(CAS No.:104594-70-9)在胶原抗体诱导的关节炎小鼠中以 1 mg/kg的剂量,能显著减轻关节炎症和骨破坏[25]。类似地,CAPE 在牙周炎大鼠模型中以10 μmol/kg/天的剂量腹腔注射 14 天,能降低血清炎症因子(IL-1β、TNF-α)的水平[26]。Caffeic Acid Phenethyl Ester还具有抗菌和抗肿瘤活性,例如有文献使用CAPE 并在1 nM至10 μM 浓度范围内测试其细胞活性,其中 10 μM的浓度显著抑制了骨肉瘤细胞增殖[27]。CAPE7(咖啡酸苯乙酯)对植物乳杆菌的最小抑菌浓度(MIC)为 125 μg/mL[28]。
8.Bay 11-7085(Bay 11-7083)
Bay 11-7085(AbMole,M2435)是一种特异性核因子κB(NF-κB)抑制剂,通过靶向NF-κB信号通路发挥作用。Bay 11-7083(CAS No.:196309-76-9)可抑制IκBα磷酸化,阻断p65核转位,从而下调NF-κB的转录活性[29]。研究表明,Bay 11-7085不仅能直接抑制NF-κB,还能通过诱导PTEN表达间接降低AKT磷酸化[29]。在多种细胞模型中,如人骨肉瘤细胞(143B、MG63)、胃癌细胞(HGC27、MKN45)和神经胶质瘤细胞(U251),Bay 11-7085(BAY 11-7083)以剂量依赖性方式显著抑制细胞增殖、迁移和侵袭能力,同时促进凋亡[30, 31]。例如,在HGC27细胞中,其24小时半数抑制浓度(IC50)为24.88 nM[30]。此外,该化合物还能下调炎症相关蛋白(如NLRP3、IL-1β、IL-18)和上调凋亡标志物(如caspase 3、Bax)的表达[31]。
9.SN50
SN50(AbMole,M10545)是一种特异性抑制核因子κB(NF-κB)信号通路的肽类抑制剂,其核心作用机制是通过阻断NF-κB p65亚基的核转位,从而抑制下游炎症相关基因的激活[32]。也有研究表明,SN50能显著减少NF-κB p65在细胞核内的积累,同时降低胞质和核提取物中p65蛋白水平[33]。SN50(CAS No.:213546-53-3)同样具有抗炎能力,例如可有效抑制LPS(Lipopolysaccharides,脂多糖)诱导的小鼠肺损伤[34]。在大鼠模型中,SN50通过抑制NF-κB核转位,能减轻机械牵拉诱导的炎症反应,并降低内乳动脉中IL-6的生成[35]。
10.SC75741
SC75741(AbMole,M4940)是一种特异性核因子κB(NF-κB)信号通路抑制剂,在多种细胞和动物模型中展现出广泛的科研应用价值。其作用机制主要通过直接抑制NF-κB的激活,从而调控下游炎症、免疫及细胞稳态相关通路。SC75741可以通过激活先天免疫,应对病毒复制和传播[36],例如保护小鼠(注射剂量为5 mg/kg/天)免受禽流感病毒的感染[37]。SC75741也具有抗肿瘤活性,可协同RIP2抑制剂GSK583抑制肿瘤干细胞[38]。
![]()
图 6. AbMole的SC75741(AbMole,M4940)抑制巨噬细胞中的NF-κB通路并降低了炎症因子的表达[39]。
11.PDTC (Pyrrolidinedithiocarbamate ammonium,APDC)
PDTC(吡咯烷二硫代氨基甲酸铵,AbMole,M4005)是一种特异性核因子κB(NF-κB)信号通路抑制剂,通过阻断IκB-α磷酸化和NF-κB p65核转位发挥功能。其生物学活性主要是抑制炎症因子(如TNF-α、IL-6、IL-1β)的表达。在细胞实验中,PDTC表现出多方面的调控作用。在GES-1胃黏膜细胞中,PDTC(2.5-60 μmol/L)可剂量依赖性地抑制壬基酚诱导的NF-κB/NLRP3通路激活,降低炎症因子释放[40]。Pyrrolidinedithiocarbamate ammonium(CAS No.:5108-96-3)在甲状腺癌细胞(BCPAP和PTC3-5)中,能抑制NF-κB蛋白表达,影响细胞增殖和迁移[41]。在动物模型中,PDTC(Ammonium pyrrolidinedithiocarbamate)对多种疾病模型具有改善作用:例如在DSS(Dextran sulfate sodium salt,葡聚糖硫酸钠,AbMole,M9443)诱导的溃疡性结肠炎小鼠中,PDTC通过抑制NF-κB活化,减少Th17细胞比例,降低促炎介质产生[42]。在慢性萎缩性胃炎(CAG)小鼠模型中,PDTC(100-200 mg/kg/day,灌胃8周)可减轻胃黏膜损伤[43]。
![]()
图 7. AbMole的Pyrrolidinedithiocarbamate ammonium(PDTC,AbMole,M4005) 被用于探究 NF-κB 信号通路在TLR5 激活中的作用[44]。
参考文献及鸣谢
[1] Guo, Q.; Jin, Y.; Chen, X.; et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal transduction and targeted therapy 2024, 9(1), 53.
[2] Hodge, C. D.; Edwards, R. A.; Markin, C. J.; et al. Covalent inhibition of Ubc13 affects ubiquitin signaling and reveals active site elements important for targeting. 2015, 10(7), 1718-1728.
[3] Irrera, N.; Vaccaro, M.; Bitto, A.; et al. BAY 11-7082 inhibits the NF-κB and NLRP3 inflammasome pathways and protects against IMQ-induced psoriasis. 2017, 131(6), 487-498.
[4] Shen, D.; Chu, F.; Lang, Y.; et al. Nuclear factor kappa B inhibitor suppresses experimental autoimmune neuritis in mice via declining macrophages polarization to M1 type. Clinical and experimental immunology 2021, 206(1), 110-117.
[5] Irrera, N.; Vaccaro, M.; Bitto, A.; et al. BAY 11-7082 inhibits the NF-kappaB and NLRP3 inflammasome pathways and protects against IMQ-induced psoriasis. Clinical science (London, England : 1979) 2017, 131(6), 487-498.
[6] Chiazza, F.; Couturier-Maillard, A.; Benetti, E.; et al. Targeting the NLRP3 Inflammasome to Reduce Diet-Induced Metabolic Abnormalities in Mice. Molecular medicine (Cambridge, Mass.) 2016, 21(1), 1025-1037.
[7] García, M. G.; Alaniz, L.; Lopes, E. C.; et al. Inhibition of NF-κB activity by BAY 11-7082 increases apoptosis in multidrug resistant leukemic T-cell lines. 2005, 29(12), 1425-1434.
[8] Shi, Y.-J.; Li, H.-Q.; Zhao, X.-H. Impact of a Papain-Catalyzed Plastein Reaction of Salmon Skin Gelatin Hydrolysate and Exogenous Amino Acids on Anti-Inflammatory Activity in LPS-Stimulated Macrophages. ACS Food Science & Technology 2025, 5(4), 1591-1600.
[9] Lv, B.; Cao, K.; Chen, Z.; et al. Jieyu I formula and its primary component quercetin alleviate anxiety by modulating neuroregeneration and inflammation via the calcium signaling pathway. Journal of ethnopharmacology 2026, 356, 120820.
[10] Soleimani, Z.; Davoudi, S.; Saffarzadeh, F.; et al. Restoring neuronal excitability and spatial memory through inhibiting amyloid-beta-induced hyperactive NF-kappaB in a rat model of Alzheimer's disease. Brain research 2025, 1861, 149703.
[11] Wang, S.; Lu, M.; Wang, W.; et al. Macrophage Polarization Modulated by NF-kappaB in Polylactide Membranes-Treated Peritendinous Adhesion. Small (Weinheim an der Bergstrasse, Germany) 2022, 18(13), e2104112.
[12] Chen, F.; Li, T.; Zhang, H.; et al. Acid-Ionizable Iron Nanoadjuvant Augments STING Activation for Personalized Vaccination Immunotherapy of Cancer. Advanced materials (Deerfield Beach, Fla.) 2023, 35(10), e2209910.
[13] Chauvet, S.; Jarvis, L.; Chevallet, M.; et al. Pharmacological Characterization of the Native Store-Operated Calcium Channels of Cortical Neurons from Embryonic Mouse Brain. Frontiers in pharmacology 2016, 7, 486.
[14] Grekhnev, D. A.; Kruchinina, A. A.; Vigont, V. A.; et al. The Mystery of EVP4593: Perspectives of the Quinazoline-Derived Compound in the Treatment of Huntington's Disease and Other Human Pathologies. International journal of molecular sciences 2022, 23(24).
[15] Zhang, C.; Lin, Y.; Li, H.; et al. Fatty acid binding protein 4 (FABP4) induces chondrocyte degeneration via activation of the NF-κb signaling pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2024, 38(1), e23347.
[16] Kim, A. Y.; Shim, H. J.; Shin, H. M.; et al. Andrographolide suppresses TRIF-dependent signaling of toll-like receptors by targeting TBK1. International immunopharmacology 2018, 57, 172-180.
[17] Mishra, K. P. Andrographolide: Regulating the Master Regulator NF-kappaB. Indian journal of clinical biochemistry : IJCB 2021, 36(1), 117-119.
[18] Sidthipong, K.; Ma, J.; Yu, W. L.; et al. Rational design, synthesis and in vitro evaluation of novel exo-methylene butyrolactone salicyloylamide as NF-kappaB inhibitor. Bioorganic & medicinal chemistry letters 2017, 27(3), 562-566.
[19] Sehnert, B.; Burkhardt, H.; Dubel, S.; et al. Cell-Type Targeted NF-kappaB Inhibition for the Treatment of Inflammatory Diseases. Cells 2020, 9(7).
[20] Kozakai, N.; Kikuchi, E.; Hasegawa, M.; et al. Enhancement of radiosensitivity by a unique novel NF-κB inhibitor, DHMEQ, in prostate cancer. 2012, 107(4), 652-657.
[21] Watanabe, M.; Yamashita, K.; Kamachi, H.; et al. Efficacy of DHMEQ, a NF-κB inhibitor, in islet transplantation: II. Induction DHMEQ treatment ameliorates subsequent alloimmune responses and permits long-term islet allograft acceptance. 2013, 96(5), 454-462.
[22] Liu, C.; Chen, W.; Chen, Z.; et al. Studies on the treatment of melanoma with folate acid conjugated dextran and lauryl alcohol loaded with IMD0354. OncoTargets and therapy 2019, 12, 4655-4663.
[23] Wang, R.; Peng, S.; Zhang, X.; et al. Inhibition of NF-kappaB improves sensitivity to irradiation and EGFR-TKIs and decreases irradiation-induced lung toxicity. International journal of cancer 2019, 144(1), 200-209.
[24] Sugita, A.; Ogawa, H.; Azuma, M.; et al. Antiallergic and anti-inflammatory effects of a novel IκB kinase β inhibitor, IMD-0354, in a mouse model of allergic inflammation. 2009, 148(3), 186-198.
[25] Williams, B.; Tsangari, E.; Stansborough, R.; et al. Mixed effects of caffeic acid phenethyl ester (CAPE) on joint inflammation, bone loss and gastrointestinal inflammation in a murine model of collagen antibody-induced arthritis. Inflammopharmacology 2017, 25(1), 55-68.
[26] Yigit, U.; Kirzioglu, F. Y.; Ozmen, O.; et al. Protective effects of caffeic acid phenethyl ester on the heart in experimental periodontitis against oxidative stress in rats. Dental and medical problems 2021, 58(3), 335-341.
[27] Santos, P. H. N.; Silva, H. L.; Martinez, E. F.; et al. Low concentrations of caffeic acid phenethyl ester stimulate osteogenesis in vitro. Tissue & cell 2021, 73, 101618.
[28] Collins, W.; Lowen, N.; Blake, D. J. Caffeic Acid Esters Are Effective Bactericidal Compounds Against Paenibacilluslarvae by Altering Intracellular Oxidant and Antioxidant Levels. Biomolecules 2019, 9(8).
[29] Tan, B.; Yuan, Z.; Zhang, Q.; et al. The NF-kappaB pathway is critically implicated in the oncogenic phenotype of human osteosarcoma cells. Journal of applied biomedicine 2021, 19(4), 190-201.
[30] Yan, Y.; Qian, H.; Cao, Y.; et al. Nuclear factor-kappaB inhibitor Bay11-7082 inhibits gastric cancer cell proliferation by inhibiting Gli1 expression. Oncology letters 2021, 21(4), 301.
[31] Xie, K.; Zhou, D.; Fang, C.; et al. Inhibition of NF-kappaB activation by BAY 11-7821 suppresses the proliferation and inflammation of glioma cells through inducing autophagy. Translational cancer research 2022, 11(2), 403-413.
[32] Zhang, L.; Wang, X.; Zhang, L.; et al. Combination of curcumin and luteolin synergistically inhibits TNF-alpha-induced vascular inflammation in human vascular cells and mice. The Journal of nutritional biochemistry 2019, 73, 108222.
[33] Wang, H. X.; Wang, H. M.; Lin, H. Y.; et al. Proteasome subunit LMP2 is required for matrix metalloproteinase-2 and -9 expression and activities in human invasive extravillous trophoblast cell line. Journal of cellular physiology 2006, 206(3), 616-623.
[34] Chian, C.-F.; Chiang, C.-H.; Chuang, C.-H.; et al. Inhibitor of nuclear factor-κB, SN50, attenuates lipopolysaccharide-induced lung injury in an isolated and perfused rat lung model. 2014, 163(3), 211-220.
[35] Wu, M.; Gu, X.; Li, X.; et al. C-Reactive Protein and Inflammatory Cytokines during Percutaneous Coronary Intervention. Journal of vascular research 2016, 53(1-2), 39-48.
[36] Tian, B.; Cai, D.; Wang, M.; et al. SC75741 antagonizes vesicular stomatitis virus, duck Tembusu virus, and duck plague virus infection in duck cells through promoting innate immune responses. 2021, 100(5), 101085.
[37] Haasbach, E.; Reiling, S. J.; Ehrhardt, C.; et al. The NF-kappaB inhibitor SC75741 protects mice against highly pathogenic avian influenza A virus. 2013, 99(3), 336-344.
[38] Wang, X. L.; Jiao, B. H.; Wu, J. L.; et al. Mechanism of RIP2 enhancing stemness of glioma cells induces temozolomide resistance. CNS neuroscience & therapeutics 2022, 28(12), 2319-2330.
[39] Jiang, Y.; Wang, S.; Zhu, W.; et al. Lysyl Oxidase-Like 1 (LOXL1) Up-Regulation in Chondrocytes Promotes M1 Macrophage Activation in Osteoarthritis via NF-κB and STAT3 Signaling. ImmunoTargets and therapy 2025, 14, 259-278.
[40] Xu, J.; Li, S.; Yang, X.; et al. Mechanism of nonylphenol induced gastric inflammation through NF-kappaB/NLRP3 signaling pathway. Toxicology 2022, 479, 153294.
[41] Zhou, D.; Li, Z.; Bai, X. BRAFV600E and RET/PTC Promote Proliferation and Migration of Papillary Thyroid Carcinoma Cells In Vitro by Regulating Nuclear Factor-kappaB. Medical science monitor : international medical journal of experimental and clinical research 2017, 23, 5321-5329.
[42] Guo, Y. E.; Lv, J.; Shu, P.; et al. Drug screening identifies pyrrolidinedithiocarbamate ammonium ameliorating DSS-induced mouse ulcerative colitis via suppressing Th17 differentiation. Cellular immunology 2024, 405-406, 104887.
[43] Jiang, J. Y.; Liu, D. J.; Liu, M. X. The protective effect of NF-kappaB signaling pathway inhibitor PDTC on mice with chronic atrophic gastritis. Scandinavian journal of gastroenterology 2021, 56(10), 1131-1139.
[44] Tahoun, A.; Jensen, K.; Corripio-Miyar, Y.; et al. Host species adaptation of TLR5 signalling and flagellin recognition. Scientific reports 2017, 7(1), 17677.
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.