氘代标记技术长期以来被视为药物代谢分析、反应机制研究、核磁共振谱学和质谱学中的重要工具。芳香醛是有机合成中的重要砌块,开发高效氘代芳香醛的合成方法具有重要意义。已有策略包括Pd/Rh共催化的芳基卤化物还原羰基化、Ru/Ir催化的氢同位素交换(HIE)以及使用氘代还原剂谨慎还原羧酸衍生物,但仍需更便捷、步骤经济的方法,特别是在复杂醛的后期氘代引入方面存在挑战。
![]()
2018年Muliang Zhang等人利用协同硫醇催化、光氧化还原催化和磷自由基化学,开发了以D₂O为氘源的通用、实用且可扩展的芳香族和脂肪族羧酸脱氧氘代制备氘代醛方法。。使用Ph₃P作为氧原子转移试剂可促进芳香酸的脱氧反应,而Ph₂POEt是脂肪酸的更优氧原子转移试剂。该方法可以对复杂羧酸进行高精度脱氧,使其在天然产物衍生物和药物化合物的后期脱氧氘代中具有广阔前景。【
Angew. Chem. Int. Ed.2019 , 58, 312 –316 】
![]()
条件优化
以4-苯基苯甲酸与D₂O的脱氧氘代反应为模型进行优化。
最优条件:[Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆(1 mol%)作为光催化剂,2,4,6-三异丙基苯硫醇(2c, 15 mol%)作为HAT催化剂,Ph₃P(1.1 equiv)作为氧原子转移试剂,DCM/D₂O(1:1, v/v)作为溶剂,5W蓝光LED照射36小时。在此条件下,目标氘代产物3a的收率为86%,氘代率为96%。
使用其他缺电子三价磷化合物(如Ph₂POEt、P(OEt)₃)导致收率下降(Entry 2–3),表明氧转移试剂的选择至关重要。
其他硫醇虽保持高氘代率,但收率显著降低(Entry 5–7)。
使用较低氧化电位的光催化剂[Ir(dF(Me)ppy)₂(dtbbpy)]PF₆(E_red = +0.97 V vs. SCE)导致收率和氘代率略有下降(Entry 8)。对照实验表明,无光照或无光催化剂时反应不发生(Entry 9)。
![]()
底物范围与应用
在优化条件下,考察了羧酸底物的适用范围。磷自由基辅助脱氧克服了羧酸氧化还原电位的限制,多种芳香羧酸均为适用底物。
芳香羧酸:苯环上带有给电子(Ph, tBu, NMe₂, BnO, SMe, NBoc)和吸电子(COOMe, COMe, 吡啶基)官能团的邻、间、对位取代基均兼容,以中等至良好收率(最高92%)和高氘代率(92–97%)得到目标氘代芳醛(3a–r)。1-萘甲酸和2-萘甲酸均为有效底物(3o, 3p)。活性末端烯烃和炔烃单元保持完整(3s, 3t)。多种敏感官能团(自由羟基3u、氨基3x、卤素取代基3i,3j、硼酸酯3v,3w、醛基3z、酮基3n)均耐受脱氧氘代条件,表明在合成和药物化学中具有广泛应用前景。反应可方便放大:8 mmol规模反应得到产物3x,收率76%,氘代率高。通过精确合成单氘代间苯二甲醛衍生物3z体现了反应的稳健性。喹啉和吲哚杂芳香酸顺利发生脱氧氘代,得到3aa和3bb。
脂肪羧酸:除芳香酸外,脂肪族羧酸也是良好底物,在改进条件下以中等收率和中等氘代率得到氘代脂肪醛3cc–ff。对此类底物,使用[Ir(dF(Me)ppy)₂(dtbbpy)]PF₆作为光催化剂和Ph₂POEt作为氧原子转移试剂是控制脱氧而非脱羧的关键。
![]()
复杂天然产物:优异的官能团耐受性使该反应能够通过生物活性天然产物、药物和农用化学品的后期官能化,合成复杂氘代醛。药物分子如雌酮(3gg)、替米沙坦(3hh)、阿达帕林(3ii)的脱氧氘代以67–92%收率和95–97%氘代率成功实现。在含叔胺基团的复杂羧酸(如瑞格列奈)中,除预期脱氧氘代外,还观察到可见光诱导的叔胺α-C(sp³)–H位点的HIE(3jj)。二丙酮-d-葡萄糖(3kk)、表雄酮(3ll)、孕烯醇酮(3mm)、l-薄荷醇(3nn)衍生物均在醛基位置以64–89%收率和高氘代率(最高99%)发生自由基氘代。这些例子表明该方法能够实现合成药物化学中的实用后期修饰。
![]()
衍生应用:醛在有机转化中的多功能性可以得到更多的氘代化合物库。例如,通过和,可方便地从所得氘代醛制备β-氘代α,β-不饱和酯10和高价值氘代胺11。氨基苯甲醛与氘代醛的反应为氘代含氮杂环化合物(如喹唑啉12和喹啉13)提供了高效途径。
![]()
扩展至还原制备普通醛:羧酸温和还原为醛是有机合成中最重要且具挑战性的官能团转换之一。仅通过将D₂O替换为H₂O,该协同脱氧反应可作为在温和条件下以良好选择性和官能团兼容性将羧酸选择性还原为醛的强大通用策略。
![]()
反应机理
通过密度泛函理论(DFT)计算,提出了协同机理:硫醇催化剂(pKₐ 10–17)与过量D₂O(pKₐ=32)发生质子交换,生成氘代硫醇(4),作为氘源。光激发态*[Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆(E_red(*IrIII/IrII) = +1.21 V vs. SCE)作为强氧化剂,单电子氧化三苯基膦(E_red = +0.98 V vs. SCE)生成三苯基膦自由基阳离子(7),后者与羧酸根反应形成中间体(8),经β-断裂生成三苯基氧化膦和活性酰基自由基(9)。尽管硫醇S–H键的BDE(80–88 kcal mol⁻¹)与醛C–H键的BDE(94 kcal mol⁻¹)存在差距,但极性匹配效应促使亲核酰基自由基(9)从氘代硫醇(4)夺取氘原子,生成氘代醛(3)。生成的亲电硫自由基(5)从还原态IrII物种接受电子完成光氧化还原循环,硫醇负离子(6)从D₂O夺取氘重新启动硫醇催化。
![]()
机理验证:为深入理解反应机理,作者进行了自由基抑制剂实验,向模型反应中加入TEMPO和BHT均完全抑制脱氧氘代,表明可能涉及自由基过程。TEMPO对酰基自由基的捕获进一步支持了这一观点。¹⁸O标记实验证明三苯基氧化膦中的氧原子来自羧酸根而非H₂O。
实验操作
General procedure for synthesis of deuterated aromatic aldehydes
![]()
To a 10 mL Schlenk tube equipped with a magnetic stir bar was added aromatic carboxylic acid (0.2mmol, 1.0 equiv.), photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 (0.002 mmol, 2.3 mg, 1 mol%), Ph3P (0.22 mmol, 57.6 mg, 1.1 equiv.), K2HPO4 (0.2 mmol, 34.8 mg, 1.0 equiv.), and the tube was evacuated and backfilled with Ar (three times). Thiol catalyst 2,4,6-triisopropylbenzenethiol (0.03 mmol, 7.1 mg,15 mol%) in DCM/D2O (2.0 mL, 1:1 v/v) were added by syringe under Ar. The tube was then sealed and was placed at a distance (app. 5 cm) from 5 W blue LEDs lamp (Figure 1.), and the mixture was stirred for 36 - 48 h at room temperature. After completion, the mixture was quenched with water and extracted with DCM (3 x 10 mL). The combined organic layer was dried over anhydrous Na2SO4, then the solvent was removed under vacuo. The residue was purified with chromatography column on silica gel (gradient eluent of petroleum ether/ ethyl acetate) to give the corresponding deuterated aromatic aldehyde products.
General procedure for synthesis of deuteratedaliphaticaldehydes
![]()
To Alk-COOH (3 mmol, 1.0 equiv.) in 10 mL of THF at -78 °C was added dropwise n-BuLi (2.3 mL,3.6 mmol, 1.6 M solution in hexane) and the reaction was stirred for 1h. When the resulting solution was warmed to -20 °C, D2O (90 mg, 4.5 mmol) was then added and the solution was stirred for 1h. After the solvent was removed in vacuo, residue was washed with hexane (20 mL) to remove the salt. The filtrate was concentrated in vacuo to afford product Alk-COOD.
To a 25 mL Schlenk tube equipped with a magnetic stir bar was added presynthesized deuterated aliphatic carboxylic acid (0.1 mmol, 1.0 equiv.) and photocatalyst Ir[dF(Me)ppy]2(dtbbpy)PF6 (0.0025 mmol, 2.5 mg, 2.5 mol%), the tube was evacuated and backfilled with Ar (three times). Thiol catalyst 2,4,6-triisopropylbenzenethiol (0.04 mmol, 9.4 mg, 40 mol%), ethyl diphenylphosphinite (0.12 mmol, 27.6 mg, 1.2 equiv.) and 2,6-lutidine (0.12 mmol, 12.8 mg, 1.2 equiv.) in toluene (5 mL) were added by syringe under Ar. The tube was then sealed and was placed at a distance (app. 5 cm) from 45 W blue LEDs lamp (Figure 2), and the mixture was stirred for 36 h at room temperature. After completion, the solvent was removed under vacuo. The residue was purified with chromatography column on silica gel (gradient eluent of petroleum ether/ ethyl acetate) to give the corresponding deuterated aliphatic aldehyde products.
作者通过协同光氧化还原催化、有机催化及磷自由基化学,首次开发了以廉价氘源D₂O对芳香族和脂肪族羧酸进行脱氧氘代的方法。多种氘代醛以中等至良好收率和高氘代率获得。该反应也为使用H₂O作为介质将羧酸转化为醛提供了一种简单且有前景的方法。
参考资料:Deoxygenative Deuteration of Carboxylic Acids with D2O;Muliang Zhang, Xiang-Ai Yuan, Chengjian Zhu, and Jin Xie*;
Angew. Chem. Int. Ed.2019 , 58, 312 –316。
![]()
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.