女士们,先生们,老少爷们儿们!在下张大少。
可感之物
八世纪早期的拜占庭最具震撼力的圣像,大概是君士坦丁堡皇宫青铜大门——查尔克门——上方的基督马赛克镶嵌画。这座由查士丁尼大帝所建的宫殿坐落于圣索菲亚大教堂南侧。据记载,该圣像风格与乔拉圣救主教堂(十四世纪重修)现存的一幅十四世纪马赛克镶嵌画(图1)颇为相似。[1]
![]()
图1:伊斯坦布尔乔拉的14世纪马赛克,救世主耶稣
然而到720年,拜占庭统治阶层中对各类圣像的敌意日益加剧——皇帝利奥三世连续颁布敕令,导致全城的宗教图像被逐步清除。公元726年或稍后时期,他命令士兵用十字架取代查尔克门上的马赛克镶嵌画。据某些记载,这一举动激怒了一群虔诚的妇女,她们袭击并杀死了执行命令的军官。暴动的领导者圣狄奥多西亚被士兵逮捕后即刻处决。[2] 针对移除圣像的示威活动引发了更严厉的镇压(包括撤除取代查尔克马赛克的十字架),此后约百年间,所谓的 iconoclasts(圣像破坏者)始终掌控着这座都城。
或许可以推测,伊斯兰教的传播对日益加剧的圣物与圣像崇拜焦虑产生了影响——该宗教严格遵循摩西律法中禁止雕刻偶像的诫命。与此同时,教会内部关于基督本质的神学争议持续发酵:倾向强调其人性的一面者,痛惜基督形象被赋予神性特质的现象。在皇帝及其智囊团看来,基督教已丧失其独特愿景,沉溺于迷信之中。而宗教争端往往掩盖着权力斗争;世俗统治者也总能从修道院解散与教堂劫掠中获得额外收益。
事实上,争斗双方在一个特定圣像——即圣体(Eucharist)上达成了共识。此种圣像并非任何形式的具象描绘,而是教会既定的仪式典章,信徒认为其中蕴含着神圣临在。正如摩西曾闻上帝之声却未见其形:用神学术语来说,上帝是"不可被局限的"(uncircumscribable)。祂在圣体中的临现,是通过神学家称为"经世之道"(economy)的过程实现的。若借提喻法(synecdoche)或可更简明阐释——这种修辞以部分指代整体。上帝被认为部分显现于圣事之中,圣事因而以象征方式"代表"上帝,但当时人们也认定这种代表具有完满性。
圣像破坏者的分歧在于:当同样观点应用于基督形象时,他们认为既然上帝是不可被局限的,便无法以具象描绘。因此圣像破坏者主张,任何对基督的呈现都只能表现其人性的一面,故而不应作为神圣临在来崇拜。这个论点在处理无数日益流行的圣母马利亚或圣徒圣像时显得更为强硬——这些形象更无可能蕴含完整神性。
理性与感知
此刻读者或疑:这段历史旁白意欲何为?神学争端似乎与数学或其同美学的潜在关联相去甚远。然则,神学论战背后确存在数学命题——例如关于"同一"与"相似"关系的辨析,正是诸多有关基督本质的激烈论争的核心。[3] 但本文的关切在于(尽管圣像破坏者持反对立场):圣像确实具有某种重要意义,这种意义将在我们审视其他对象本质时被重新唤起。
圣像破坏之争引发了一个核心议题:图像如何关联于其意图再现的对象——即古典时期称为"原型"(prototype)的存在。对于圣像的坚定捍卫者圣狄奥多尔(St Theodore)[4]而言,图像与原型属于同一范畴。他援引亚里士多德提出的关联范例:双倍与半数。
盖因原型必然隐含其衍生的图像,犹如双倍总暗含使其成倍之半数。若无图像,则原型不复存在;若无半数之概念,则双倍亦无从谈起。然此二者既同时存在,便相生相成,共构认知。(1981, p. 110)
人们尊崇的并非图像本身,而是"融入"图像中的原型"形态"。根据狄奥多尔的理论,"二者彼此依存,共生共在"。基督被视为其圣像的原型,但在此语境中,部分对整体的指涉超越了象征意义。对狄奥多尔而言,相互关联的定义意味着同时共存的实体——基督圣像并非模仿或相似,而是分有了基督的本体。相似即存在。他将圣像描述为"自我显现的异象",宛若月光实为阳光的延展而非其影像。米格尔·塔门(2001)对此评论道[5]:
总而言之,"基督"这一概念的外延包含"基督的可感显现"。这意味着——尽管令西方神学界深感惊骇——在极其重要的意义上,基督圣像已然是基督本身;同理,在极其重要的意义上,基督本身也已然是基督圣像。(第24页;原文斜体强调)
相传当基督马赛克像被移下查尔克门时,利奥命人题诗于原处,慨叹圣像缄默无言之特性。自然,今日我们或可思忖:图像能否向我们"诉说",实关乎我们是否倾听乃至如何倾听——进而关乎我们究竟听见什么。内在世界与外在世界的分野,或许正存在于凝视圣像(或任何客体)的行为与我们实际所见之物之间。
婴儿卧于摇床,凝望之物在观察者看来或是其手掌。然其所见尚属混沌未明:双眸紧盯漂浮于眼前的奇异物体,婴儿尚未知此手之功用,更遑论其名谓。迈克尔·弗雷恩(1974, 第287-288段)曾提出:观物实则是为其创造私人隐喻的过程:
这种隐喻或可视象化:我将流转的雾气视作面庞,将我的手认知为手[…]你对手与"手"概念的相似性认知,早已沉入感知的潜层土壤——正如心理状态的隐喻早已深植于你的自我思维之中。
感觉终将与反思相连:可感(即可被感知)之物终将成为可理解之物。内在与外在不可分割地交织:正如谚语所言,纯真之眼实为盲目,空白之心实为虚无。更何况,眼与心终究承载着诸多不可被局限之物:你所凝视的永远无法被全然表述,你所见的亦复如是。因而,人们很快便对可感之物产生殊异的理解。
理性与想象
西方思想史中一个戏剧性的例证,便是十七世纪所谓的"感受力分化"。在现代科学兴起之前,理性与想象本同织于一匹锦缎——更确切地说,是共刻于同一方泥版。古巴比伦楔形文字中,大神安努(Anu)的符号仅为一笔楔痕,而这枚刻痕同时代表数字1(或60)。文书者既记录神话,亦测绘天象;吟游诗人既赞颂英雄,亦描摹自然。叙事者本是计数人。
然区分既起,界限自成。时至今日,书写与计算似已成敌对之势。1817年末,画家本杰明·海顿为华兹华斯、兰姆、济慈等文人挚友设宴时,便上演了著名例证:席间众人认定牛顿以光学原理解析虹彩,却毁尽了彩虹的诗意。他们举杯祝酒:"为牛顿健康干杯,愿数学永陷混沌!"[6]
数年后,济慈在诗作《拉弥亚》中再度书写彩虹,以尖锐笔触抨击他所指的"冰冷哲学"——即数学与科学(彼时称为"自然哲学"):
天上曾有一道瑰虹:
我们已知其经纬、其肌理;
她已被纳入
庸常事物的沉闷目录。
哲学将剪断天使的双翼,
以规尺征服所有奥秘,
掏空萦魅的苍穹,荡平地精的矿域——
将彩虹拆解析离,[…]
对诗人而言,彩虹或是希望的奇迹象征:"每见虹霓跃苍穹,心潮澎湃不能已"——华兹华斯曾如此写道。在《旧约》中,彩虹自是上帝与诺亚及其后裔立约的凭证,承诺不再降灭世洪灾(图2)。然其他记述里,彩虹的允诺却缥缈难寻:你或梦想虹桥尽处的黄金瓮,实则每当你以为将至,它总又向前遁移。
![]()
图2:诺亚携家眷与动物离方舟,十三世纪马赛克镶嵌画,现存威尼斯圣马可大教堂
彩虹是精妙的主观视觉现象,每位观察者所见皆不相同。或许正是彩虹的这一特质,最先激发了探寻者的好奇心——他们渴望理解其成因与机理。值得注意的是,自古希腊以来,众多数学家皆曾致力于解答此类问题。譬如笛卡尔论述彩虹工作时采用的平实文风,恐怕只会加深诗人的偏见(包括十七世纪后期诗人让-巴蒂斯特·卢梭的偏见,此人曾斥笛卡尔"割断了诗歌的咽喉")。
我执笔精确计算了射向水球不同点位的光线路径[…]继而发现:经过一次反射与两次折射后,在四十一至四十二度角范围内可见的光线数量,远超过任何更小角度;而大于此角度则完全不可见。(引自博耶,1959年,第211-212页)
然而,那些能以想象力投身几何探索、追寻彩虹形态与尺度之人,或许亦将发现:心潮仍会为这种观物之道澎湃不已。
彩虹的魔力究竟存于客体之中,还是寓于观者之心?即便我们拒绝这种二元对立,陈述所见的方式似乎依然殊途。不妨将彩虹(济慈笔下"令人敬畏"之物)视作一种圣像,并在其纷繁的阐释中,聆听圣像破坏之争的历史回响。[7]
和谐与比例
所谓感受力分化的另一例证,或可见于当代人们观赏格拉纳达阿尔罕布拉宫伊斯兰瑰丽装饰的不同方式。至迟在十四世纪,伊斯兰工匠已臻完善一种抽象艺术风格,旨在呈现世间和谐与统一的神秘意境。当凝视阿尔罕布拉某些铺砌图案中错综交织的纹样时,视线无需在任何处停留;更甚者,流转的线条自成循环,无始无终。这种交织被视作神圣统一性的直接表达——潜藏于世界万千纷繁背后的本质。和谐既是"多中之一",亦是"一中之多",而交错纹饰正同时展现了这两种特质(图3)。格奥尔格·康托尔对无穷的数学处理中,存在着与此形而上理念的有趣共鸣:于他而言,这便是将"多"视为"一"的哲学实践。[8]
![]()
图3:伊斯兰交错纹饰,十四世纪壁画,现存格拉纳达阿尔罕布拉宫
更广泛而言,伊斯兰图案或许如数学本身,为观者提供了一种"空心符号"的自由——这种符号并不锚定于"具体"现实。因此,对阿尔罕布拉铺砌图案的数学阐释难免走向特定化。例如有主张称(虽存争议),这些图案囊括了全部十七种平面晶体群之范例。当然,对此的数学讨论于某些人而言无异于"拆解彩虹"——正如另一例证:以下这段关于交错纹饰的技术论述(格伦鲍姆与谢泼德,1993年)亦复如是:
对于对应单纹样的p4m群设计图案,其平移重复单元内的交叉点数量为2c(S);若属p6m群,则交叉点数为3c(S)。若存在多纹样,需将公式中c(S)替换为基础区域内各纹样交叉点数之和。(第153页)
我们或可推断,此类解读已远悖伊斯兰工匠及其赞助者的本初意图。这些意图往往难以确知:很可能既蕴含精神追求,亦掺杂世俗野心。
与此同时,意大利基督教艺术蓬勃发展之际亦面临类似命题。若以十五世纪完全成熟之作——皮耶罗·德拉·弗朗切斯卡的《基督受洗图》(图4)为例:
![]()
图4:皮耶罗·德拉·弗朗切斯卡 《基督受洗图》,板面油画 约1440–1450年
此画原为皮耶罗故乡博尔戈圣塞波克罗某教堂祭坛画之中幅。它立于祭坛之上俯瞰圣体仪式,因而在当时兼具宗教意涵。然我们亦知画家心中别有考量。用其本人之言:
绘画包含三个主要部分,我们称之为disegno(构图)、commensuratio(比例)与colorare(设色)。所谓disegno,即界定物体形状的轮廓与边线;所谓commensuratio,即轮廓边线在恰当位置按比例布局;所谓colorare,即色彩在物体上的呈现方式[...](引自巴克森德尔,1985年,第112页)
比例与透视是皮耶罗画作中的核心要素。现代评论家着重强调其中似乎将宗教主题世俗化的数学抽象性。
然而,即便是在他所有画作中数学规整性最弱的《基督受洗图》中,我们也能即刻感受到几何框架的存在;稍加分析便可发现画面在水平方向分为三等分,垂直方向分为四等分。[...] 这些分割线构成了中央正方形区域,该区域又再次被三等分与四等分,而在此正方形内绘制的三角形——顶点位于象征圣灵的鸽子处,底边与下方水平线重合——则构成了画面的核心构图动机。(克拉克,1951年,第13页)
这种比例结构揭示出一个由数学法则统御的宇宙秩序。
偶像崇拜与圣像破坏
当某些原本具有神圣象征意义的事物——诸如伊斯兰图案或基督教绘画——经历所谓"数学化"过程后,可以说它们是以另一种方式被偶像化了。阿尔罕布拉宫作为旅游胜地,其镶嵌图案对多数观者而言提供的是美学享受而非宗教体验;祭坛画被陈列在美术馆中,人们因其艺术与历史价值而赞叹。事实上,"艺术品"这个概念本身——一个相对晚近的产物——或许正可被视为某种非破坏性的圣像破坏形式。
博物馆、美术馆或考古遗址中保存文物的理由,通常被表述为使它们免遭遗忘或毁灭。但从另一视角来看,这些文物原有的意义大多已在此过程中流失。在美术馆里凝望一幅画作,无论体验多么令人心醉神迷,终究不同于对圣像的虔诚崇拜——至少对于像圣狄奥多尔这样的圣像崇拜者而言是如此。被保存的文物在某种程度上只是某种存在的表征与替代。用精神分析学的术语来说,它只是个"部分客体";而在其原始语境中,圣像的象征意义使之成为"完整客体"(此时象征性联结已转化为普遍的转喻关系)。
当卢浮宫于1793年成为国家博物馆时,馆内诸多具有历史意义的藏品却带有不合时宜的政治色彩,这被视为憾事。一座遭亵渎的皇家陵墓中出土的权杖,是否应当被博物馆收藏?文物委员会最终裁定:不应将其视作权杖,而应认定为"十四世纪金匠工艺的典范"。正如斯坦利·伊泽达(1954年,第26页)在论述法国大革命时期圣像破坏运动的文章中所指出的:"将政治符号禁锢于博物馆中,它便仅仅成为了艺术。"
博物馆或可成为陵墓。当然,艺术爱好者定会对此提出异议;他们或许不再对诸如皇家权杖这类器物怀有最初的敬畏之情,但他们依然是偶像崇拜者——即便信奉的是另一种理念。阿尔罕布拉宫的镶嵌图案对不同群体具有不同意义——譬如虔诚的穆斯林信徒与痴迷数学的学者。并非所有人都认同圣狄奥多尔关于器物自有其意图与阐释的观点,也并非所有人都赞同洛克将经验完全归结于所谓"感觉反思"的传统经验论认识论。
塔门(2001)提出,事物唯有在他所称的"友人社会"的语境中才具有可阐释性。此处的友谊仅指任何社群都不可或缺的某种共识基础。他援引亚里士多德之言:"友谊似为城邦之纽带"。塔门(第3页)发现,当人们以不同方式共同关注某事物时,其间存在某种相似性:
世上本无所谓可阐释对象或意向对象,只存在被特定群体认定为可阐释的对象——更准确地说,是存在这样的人群集合:他们共同认定某些对象具有可阐释性,并因此以可辨识的方式对待这些对象。尽管这类群体形式各异(虽未必总是具有严密的组织形式),但我认为,我们之所以能断言此类社群的存在,大体是基于这样的经验事实:某些人解读茶叶的行为,与某些(他人或同一批)人分析冷锋、解读小说或审视雕像的行为之间,存在着某种经验层面的相似性。
或者,我们或许可以补充说:正如某些人对待权杖、祭坛画与瓷砖的方式,抑或是对待一切图案与对称形式的方式。瓦切尔·林赛诗作《欧几里得》中那个沉默的孩子,终日凝视着肃穆的长须老者在沙地上描绘圆圈。这孩子"从清晨守候到正午,只因他们画出的圆形月影如此迷人"。
可阐释对象
因此,用塔门的话来说,我们成为了可阐释对象的"友人"——无论作为宗教信徒、艺术爱好者、古董收藏家、园丁、数学家,抑或其他身份。这类对象可称为"圣奉物"——即还愿祭品、虔敬之物,四世纪的圣约翰·克里索斯托姆将其定义为"从俗世抽离而珍藏之物"。诗人大卫·琼斯(1952年,第29页)则认为,它们是超验存在的标志,是"被树立、被高举,或以任何形式奉献于神祇"的物件。[9] 值得玩味的是,相关词汇"anathema"最初意指神圣可敬之物,后来却转化为截然相反的含义——如今教会用"anathematises"(革除教籍)来谴责异端。
物件可能对我们产生特殊意义,成为圣奉物;但也可能沦为恋物——成为部分客体而非完整客体。完整客体或许蕴含着某种神圣性(!),又或者,我们通过它们被自身未解的心结所包容。这种歧义在"object"一词的双重解读中尤为凸显:作名词时意为"客体",作动词时则指"反对"。这个带有攻击性的词语既暗示着对我们意愿的抗拒(如障碍物),又指向我们奋斗的目标(该词的本义)。精神分析学家迈克尔·巴林特(1968)在某些案例中指出了更深层的问题。[10]
任何与[客体]分离的威胁都会引发强烈焦虑,而最常采用的防御机制便是紧抓不放。反之,当客体变得过于重要时,人们反而无法给予其应有的关注与体察——它必须与个体意志保持绝对一致,仅仅作为理所当然的存在而被视若无睹。(第69页)
需要指出的是,此处"客体"是在极其宽泛的意义上使用的。威廉·布莱克曾写道:"唯心灵之物方为真实。"当精神分析师谈及客体时,他们不仅指实体物质,也可能指记忆、意象、梦境、情感或概念——甚至(最令人困惑的是)也包括人。事实上,任何能够被个体感知或关注的事物皆可成为客体。
数学家究竟关注什么?他们是在审视自身的思维过程?还是在解读物质世界?抑或正在观察某个"形式"的世界——类似华兹华斯所说的"由纯粹智慧构筑的独立世界"?数学实践者会侧重其中某些或全部可能性。对于"数学对象"的界定,他们同样存在类似的分歧。但或许众人都会认同:当注视一个几何图形时,他们关注的并非视觉痕迹本身,而是某种只能被"心灵之眼"洞察的抽象普遍性。这或许正是圣狄奥多尔断言"普遍性需以心灵观照"的真意,也是许多人认同柏拉图"数学之力在于将灵魂从可感世界引向可知世界"的理据——尽管对这些术语的精确阐释本身已构成难题。[11]
一个简单的例子或可阐明此点。我们应如何解读这幅图示?大卫·皮姆(1995: 57)指出,我们需要"透过图示的特殊性,去把握作图者意图引导我们关注的普遍性"。因此可以说,图示发挥着符号功能,它"并非定理所论述的实际对象"。[12]
无论存在何种联想,请思考:当有人询问这个轮廓图形的面积时会发生什么?此例中的"阶梯"共有七级。但级数能否任意变化?数学家或许能从图中解读出普遍规律——将其视作半个外接正方形与若干小半方形(即阶梯踏面部分)的组合。[13] 相应的代数对象(亦即这种心智认知通过书写符号的外化呈现)便可表述为"(1/2·n² + n·1/2)"这个表达式。
![]()
这一认知过程与我们如今解读绘画的方式颇有相通之处。从图像意义而言,皮耶罗的《基督受洗》描绘的是基督生平的一个场景。但更重要的在于其象征意义:对信徒而言,这幅画呈现了神迹事件,昭示着普遍性升华的可能;而正如前文所示,对具备数学思维者来说,它关乎和谐与比例——这些抽象概念或许正提供了另一种形式的升华。
画家瓦西里·康定斯基(1931: 352)曾断言:"三角形锐角与圆相触的瞬间,其意义不亚于米开朗基罗画中亚当与上帝指尖的相接。"我们不禁要问:数学对象何以承载如此深厚的精神投入?下文将指出,其中一个线索潜藏于我们经验中某些最原初的客体之中。
![]()
图5:巴勃罗·毕加索,《水果与酒杯》,1908年
此处与彼处
一个两岁男童随手拾起周遭的小物件扔到房间另一端。每当此时,他会发出某种声响,母亲将其解读为宣告物件"消失"的语句。这逐渐演变成他乐此不疲反复进行的游戏。直到某天,他捡起的是个系着细线的木轴。他攥住线绳末端将木轴抛远,在物体消失时照例发出惯常的呼喊。但此刻他借助细线拉回木轴,当物件重现时发出欢快的叫声,仿佛在宣告它的归来。这场关于隐现、弃绝与回归的游戏,从此又被他不知疲倦地重复上演。
许多父母都能从自身经历中辨认出类似情景。但他们未必认同这段叙述中隐含的解读。母亲们通常坚信自己懂得婴儿呓语的真实含义,她们能清晰辨别孩子的欢欣与悲伤。但旁观者往往更为审慎——尤其在面对这类育儿日常的深层阐释时,譬如西格蒙德·弗洛伊德在1920年提出的那个著名分析。
这名男童实为弗洛伊德的孙子:他发出的声响被母亲理解为德语"fort"(意为"消失")与"da"(意为"存在")。但弗洛伊德(1920/1955)随后对这个游戏作出了更为深远的阐释:
这个游戏关联着孩童重大的文化成就——即他通过"本能扬弃"(亦即对本能满足的舍弃),在不加抗议地任由母亲离开的过程中达成的心理突破。可以说,他通过自主导演周遭物体的消失与重现来获得补偿[...]母亲的离去必须被演绎为最终欢聚的必要序幕,而游戏的真正目的恰恰蕴藏于这重逢的喜悦之中。(第15-16页)
弗洛伊德进一步指出,这种体验最初是被动的,但通过重复游戏,男童逐渐转变为主动角色。他提出,在抛掷物体的行为中,孩子可能正在满足某种被压抑的冲动——即对母亲离去施加惩罚的欲望。该游戏确立了他对矛盾情绪的控制力。起初,所有玩具似乎都被驱逐——"消失";而后阶段,玩具得以被召回,这种掌控能力不仅带来快感,更蕴含着对母亲的独立性成就——此前正是母亲本人承担着归还玩具的职能。弗洛伊德还注意到,这种愉悦同样包含着征服潜藏于独立过程中的丧失之痛。如今,婴儿能在意念中驱逐并召回母亲:消失——存在!
当然,这种反复抛掷与收回的行为在后期会变得更为抽象——无论是书写与阅读、加减运算、微分与积分,抑或其他形式——但其中愉悦的内核可能得以延续。此外,正如精神分析师所观察到的,需求的重复往往伴随着对重复本身的需求。
或有读者已认定此说过于牵强——木轴终究是木轴而非母亲,弗洛伊德学派的阐释终究是臆测而无法证实。他们的质疑自然不无道理。但问题的关键在于:无生命客体能否代表(象征)人或情感?不可证伪的解读是否仍具某种实践价值?歌德曾言:"唯能孕育果实者,方为真实"。这虽与数学传统相悖,却正是本文所取的路径。因此我们设定初始公设(仿欧几里得之"要求"):任何客体都不止于现象层面的呈现,它们可"表征"他物。至于所表征为何——无论被视为意识或潜意识——皆属诠释范畴,应被理解为可能孕育真知的建构,而非可验证的真理。[14]
发现与创造
诸多经验可被凝练为单个客体、意象、词语或声响。这个过程大多处于潜意识层面——即不易被觉察,有时甚至被深度压抑。这意味着,在潜意识层面被触发的内容,往往与意识层面的认知大相径庭甚至彼此矛盾。我们在绘画、文学与音乐中的体验皆可印证此点。
这也必然存在于我们的数学体验中。以归谬法证明为例:其关键点在于遭遇矛盾的那一刻——A不可能为非A。此处的"不可能"是意识层面的断然禁止。但根据精神分析学说,常规逻辑法则在潜意识进程中并不适用。弗洛伊德有句名言:潜意识中不存在"否定"。因此从某种层面说,我既恨又爱,木轴既是亦非我的母亲。
一位名叫伊格纳西奥·马特·布兰科(1975)的分析师进一步发展此理论,断言潜意识中不存在秩序——没有先后,没有大小:用专业术语说,即不存在不对称关系。因此在潜意识"思维"中,基督圣像即是基督本身,皮耶罗的画作即是受洗仪式,乳房即是母亲——木轴亦复如是。事实上——在潜意识层面——任何部分即是整体。马特·布兰科引用一位精神分裂症患者的话"我的手臂就是我的身体",并指出患者此言是字面意义。这也令人联想到无穷集合的数学特性:例如伽利略曾观察到,自然数集合中包含着一个子集——看似更小的平方数集合——其数量却可与整体等势。
我们不禁将无穷集合论中诸多著名悖论视为潜意识过程的某种表征。尽管存在这些悖论,数学家们终究能够——事实上也确实——就数学性质达成共识,即便他们对数学对象的本体论地位各执己见。在术语含义达成一致的前提下,2的平方根要么是有理数要么不是——且已有方法判定孰真孰假。但呼应前文关于圣像的神学讨论,数学家对平方根的本质存在分歧:它究竟是人类的构造物,还是某种先验存在?
我个人认为,数学(或艺术)究竟是发现还是创造并非核心议题。哲学家迈克尔·达米特(1964: 509)曾指出,这种非此即彼的设问实则是暗中支配我们思维的虚假二分法。但令我深感兴趣的是,人们何以能如此笃定地给出彼此矛盾的答案?这份确定性从何而来?根据精神分析师亚当·菲利普斯的观点,精神分析的诘问不再纠结于"你所说是否真实",而是转向探询:"是怎样的个人经历使你倾向于信奉某个特定答案?"
是否有些人天生倾向于将他人视为观念的概念认知为"实在客体"?在探讨宗教经验时,威廉·詹姆斯(1902)曾论及人类的本体论想象力——并坦言自己或许正欠缺此种能力。这种对他人经验不居高临下的态度令人钦佩。这与我们多数人不同:尽管我们有时能就外部现实达成共识,但当面对他人似乎构建的内心现实时,我们往往难以如此从容。
在我看来,这场争论的本质正在于此。因此有必要考察另一个讨论内外现实概念的语境——即精神分析学中所谓客体关系学派的研究。例如唐纳德·温尼科特曾指出婴儿哺乳体验中的模糊性:婴儿开始相信某种外部现实的存在,这种现实的降临宛如魔法。乳头与婴儿嘴唇的接触催生了婴儿的认知。从某种意义上说,婴儿创造了客体,但客体本就存在于彼处,静候被创造。
耐人寻味的是,达米特在对数学对象本质的永恒争论评论中,以不同语境呼应了这一观点——他认为数学对象正是在我们探索过程中应运而生的。温尼科特指出,有些婴儿会获得"发现预设之物"的错觉;而较不幸的婴儿则可能因"与外部现实缺乏直接接触"的认知而产生困扰。当我需要时,乳房是否存在?或早或晚...但对某些不幸者而言,答案永远是否定的。
一,二,三......
让我们回到万物伊始——那个没有言语的纪元。重归前语言状态的体验殊为不易。我们不仅创造着言语,在某种意义上也被言语所塑造。如何过渡到语言世界的方式,可能成为心理健康的重要决定因素——当然也深刻影响着我们符号化的能力、应对未知事物的能力,以及数学思维的能力。
太初万物合一。母婴构成完整的统一体。在某个时刻,母亲逐渐成为"他者",于是有了"二"——尽管仍以某种统一体形式存在,构成一对。但这他者并非总在场:婴儿无法再与母亲合一,不得不应对某种缺失感——或用精神分析的隐喻语言来说——应对乳房的缺席。正如弗洛伊德(1917/1955: 249)那句令人难忘的表述:"客体的阴影笼罩了自我"。[16]
失去的客体或可在幻想中寻回,通过魔法般的愿望满足或象征性演绎:消失——存在!母子题材曾是备受文艺复兴画家青睐的圣像主题,勒内·马格利特亦以其标题惊人的画作《数学精神》延续这一传统。后者颠覆常规意象,展现男子怀抱母亲的场景——这使得原主题中某些潜意识弦外之音令人不安地显形(图6与图7)。
![]()
图6:桑德罗·波提切利,《手持书册的圣母》,1480年
![]()
图7:勒内·马格利特,《数学精神》,1937年
认知差异即是在缔造边界,区分内外,划清自我与非我。"二"的原始体验呈现为极性对立。何时"二"成为"三"?何时单元与成对的概念能发展为持续计数至三乃至无穷?通常,背景中总存在父亲或父性形象,在某种意义上将婴儿从母亲身边温柔引离。米开朗基罗的著名画作《圣家族》可诠释此过程:画中约瑟正将婴孩耶稣举过玛利亚头顶。婴儿不再独占母亲的关注;父亲将扮演社会化角色(图8)。
![]()
图8:米开朗基罗,《圣家族》,1456年,佛罗伦萨乌菲齐美术馆
对精神分析学家雅克·拉康而言,婴儿通过先验存在的符号中介遭遇语言——他称之为"父之名"。这个闯入的第三元——无论真实或想象的父亲——被拉康关联至所谓"符号界"的过渡阶段。每个词语、每个符号,都是远离母亲的一步。尽管,如同米开朗基罗画中的婴孩,我们依然会拽住她的发丝。
温尼科特(1971)将符号的使用与最初的游戏体验相联系,并将其置于他称为"潜在空间"的领域:
"从生命伊始,婴儿就在主观客体与客观感知客体之间的潜在空间里,在'我之延伸'与'非我'之间,经历着极度强烈的体验。这个潜在空间游移于'唯我独存'与'超越全能控制的外在客体与现象'之间的相互作用中。"(第100页;原文为斜体)
根据温尼科特的理论,婴儿会调用"过渡性客体"——如安抚巾、泰迪熊、玩具等——作为"母亲"与"非母亲"之间的中介。这类客体作为符号,将本将分离的二者统合为一(呼应希腊语simbolein"聚合"的本义)。它们亦是迈向计数的第一步,类似于拉康理论中打破稳定二元结构的"闯入的第三元"。[17] 正是在这"第三区域"中,我们初尝符号之用,初体验游戏之趣。这种幻想与现实之间的中介作用,似乎在任何领域的创造性体验中都被唤起着。
游戏与现实
数学对象或许亦可视为温尼科特意义上的过渡性客体。正如数学家菲利普·马赫(1994)所述[18]:
"若我们认同这样的观点——个人的数学现实实乃其潜在空间在数学活动中的具象化,那么此心理空间中的客体(即个体所把玩的数学对象[...])正发挥着过渡性客体的功能。由此视角观之,泰迪熊与自伴算子之间的心理差异实则微乎其微[...]"(第137页)
我们似乎以不同方式应对着从原始内心世界向外部世界的过渡——后者终究是我们必须沉浸的领域。而介于这两者之间的第三世界,正是我们多数文化经验的生根之处。有观点指出,最初接触这个第三世界的体验,将在某种程度上决定:我们能在多大程度上从容面对经验的符号表征,又能多大程度信赖"抽象"客体能满足我们的期许。
孩童们把玩着他们的过渡性客体——无论是玩偶这类实体玩具,还是数字这类虚拟存在。任何玩具都蕴含参与性:它往往由孩童利用周遭现成物件或偶然浮现的思绪建构而成。玩具能让孩子从纯功能性的世界中抽离,在私密的想象国度里更清晰地觉察自身行为。玩具者,可戏之物也。而游戏,正是将想象力烙印在现实经纬之上的仪式。
温尼科特(1971)亦将游戏视为诸多文化经验——无论是艺术、科学抑或数学——的根源:"文化经验始于创造性的生活,最初体现在游戏之中"(第100页)。理想状态下,潜在空间会因婴儿自身的创造性想象而丰盈;最糟情形下,婴儿无法信赖自身经验,变得过度依赖他人。温尼科特援引另一位分析师阿尔弗雷德·普劳特(1966)的观点:"形成意象并通过重组为新模式而建设性运用这些意象的能力——与梦境或幻想不同——取决于个体信任能力的强弱"(第130页)。在艺术或数学课堂中最难教导的,正是那些对自身能力失去信心的学生。
![]()
在无垠世界的海岸线上,孩童们嬉戏着。
泰戈尔的这句诗引开启了温尼科特(1967)那篇探讨文化经验定位的非凡论文。在这位精神分析师看来,大海与海岸象征着"男女之间无休止的交合"(第368页)。这结合孕育的孩子从海中浮现,登陆岸畔。并在想象性游戏中,同时拥抱着大海与陆地。
由此,所有后续"游戏性"文化活动的起源都被置于这最初体验之中。这意味着各种成人文化活动在内心层面并无太大差异。据哈罗德·罗森伯格(1964: 115)所述,对威廉·德·库宁而言,他所描绘的客体"承载着与数字、数学符号、字母表同等量级的情感负荷"。
艺术的潜藏秩序
人们通过多种途径将数学与其他活动相联系。数学家们已加入其他可阐释对象爱好者的行列。当画家莫里茨·埃舍尔于1920年代发现阿尔罕布拉宫装饰图案时(这些图案此前未在旅行指南中受到特别关注),数学家们便开始对这些伊斯兰设计产生兴趣。随后,他们又对埃舍尔本人作品中更为复杂的几何结构产生了研究热情。
艺术教育理论家安东·埃伦兹维格(1967)建立了另一种与数学的联结。在他所处的时代,许多艺术教师担忧青春期的过渡会引发所谓"再现危机"——即原本自由创作的儿童会突然变得高度自我意识与自我批判,执着于以更照相式的手法再现所见之物。埃伦兹维格为艺术教师提供了一种精神分析视角的解读路径。
尽管他认同潜意识进程完全未分化的特性,但也主张其并非混沌无序。他认为,虽然潜意识中不存在概念区分,却存在某种知觉结构——正是这种结构构成了他所言艺术的"潜藏秩序"。通过调动抽象思维能力(他认为这种能力在青春期前数年便会显现),便可唤醒这种秩序。当孩童因无法写实再现外部世界而受挫时,他们能在内心世界的抽象表征中获得满足。
"知觉结构"浓缩着童年早期的经验——这些经验之所以属于潜意识范畴,既因人们通常对其毫无觉察,也因即便某些重获或转化的表征浮现,我们仍缺乏恰当语言予以描述。譬如,我们通常无需刻意感知身体如何融入周遭空间。对雕塑曲线的审美愉悦,或更具体地说——触碰肩部时产生的欢欣,是否正是对母亲乳房那沉潜经验的再度唤醒?
数学家惯于在意识阈限之下工作——在那里,事物已被知晓却尚未被思考。他们有时泛称为"直觉"的能力,或许借用克里斯托弗·博拉斯(1987)提出的"未被思考的已知"概念来描述更为贴切。[19] 埃伦兹维格关于这类潜意识扫描的讨论,援引了少数试图描述数学创造过程的数学家的研究成果。
但我们或可区分两种模式:一是颇具影响力的数学家亨利·庞加莱所描述的流畅问题解决过程,二是精神分析视角下更具情感张力的潜意识进程。例如威尔弗雷德·比昂援引克莱因理论提出,创造力(无论艺术或数学)都涉及回归所谓"偏执-分裂位态"——正如湿婆神之舞,没有毁灭便没有创造。[20]
潜意识知觉结构可通过多种方式被触发。但埃伦兹维格的核心观点在于:这种结构正是潜藏的支架,是未被言说(未必被压抑)的经验,尤其能被抽象艺术重新唤醒。因此他鼓励艺术教师利用潜伏期特质:一方面更形式化地运用点、线、圆等抽象元素进行教学,另一方面以直接而规范的方式传授绘画技法。
这对数学教师而言显然具有相应启示,但这些启示尚未得到充分阐发。历来普遍存在这样的观点:譬如算术运算,最好通过实际应用来掌握。这曾意味着要完成无数人工编制的购物清单计算——当今仍有许多类似的教学实践。但确实存在另辟蹊径的方法,有力印证着埃伦兹维格的不同见解。这些方法也表明——至少在数学领域——抽象符号在幼龄阶段便可被自如运用(其中暗含的隐喻意义重大)。
通常而言,这类符号是空灵的:埃伦兹维格曾论及抽象艺术的"充盈的空无"。这意味着它们能起到凝缩作用。以点、线、圆为例——它们既是几何学的素材,也是众多抽象艺术的基本元素——其重要性不仅源于多种缘由,更因为点落于线上、线穿过点或相切于圆,这些关系或许正象征着"我"自身所依存、经历与触碰的存在。
结构之上的结构
数学的力量在于其抽象普遍性。数学家们运用这种力量时往往显得尤为贪婪:他们会在一切可能之处推行"数学化"。这种倾向自然是科学掌控物质世界的关键,也孕育着终将彻底理解并掌控政治经济事务的希望。然而,尽管成就斐然且前景可期,数学仍常遭受合理质疑——某些数学应用确实可能显得苍白无力,流于简化。
词典记载"数学化"动词用法的最早例证可追溯至十九世纪日记作家亨利-弗雷德里克·阿米埃尔(1885),他曾批评同代人将道德"数学化"。在评述泰纳同时代的英国文学史时,阿米埃尔延续了浪漫派诗人在海登晚宴上流露的鄙夷:
它非但未能激发生机、鼓舞人心,反而令人枯竭、侵蚀灵魂、陷入悲郁[...]它激不起任何情感涟漪;仅仅是传递信息的工具[...]赋予我们代数而非生活,公式而非意象,坩埚的蒸汽而非阿波罗的神性迷狂。冰冷的视野将取代思维的欢愉,我们将见证诗歌的死亡——被科学剥皮析骨。(第181-182页)
世间万物似乎皆可被数学化。互联网检索显示,"数学化"这一概念已应用于自然、空间、经济、心理、测算、母性、荒诞、绘画、交响乐、诗歌、海贝、陶艺、农耕实践等约两千个领域......
大卫·惠勒(1979/2001)指出[21],当某物被转化为具有显著数学特征的形式时,最易识别其"数学化"进程。他举例说明:如幼童摆弄积木时运用对称性表达认知,或年长孩童在几何板上探索时,对其所能构建的三角形面积关系产生兴趣。
我们通过观察特定情境中呈现的组织迹象、形式特征与附加结构,从而察觉数学化的发生。我借助这些微妙的线索提出:数学化实则是将结构叠加于结构之上的行为。
惠勒所举之例均取自合宜的教育情境——那些结构积木与几何板本身就被预设了承载数学结构的使命。然而在他提供的另一个案例中,当成年人注视建筑物并对其设计等产生疑问时,情况或许更为复杂。执着的教师可能引导学生观察建筑以激发数学思维,但需认识到这或许是一种圣像破坏的形式——数学结构的实现与欣赏,很可能以牺牲该建筑原有特质(或象征意义)为代价。
这个问题精妙地潜藏于实践之中:当我们在特定文化的各类手工艺品结构之上识别(民族)数学结构时,总能察觉到它的存在。
词语与物象
我们如何言说事物,才能超越其自我言说?
以苏格兰各地新石器遗址出土的奇异石球为例,可说明按器物自身逻辑进行阐释的困难。现存于各博物馆的此类石球约四百枚,直径7-10厘米,经雕琢形成带若干凸起的近似对称形状。已知标本中半数为六凸起——即近似具有六个曲面的立方体。此外亦有三、四、五凸起之例,以及其他数量者,最多达八十凸起。其中一二石球刻有极为复杂的螺旋纹饰(图9)。
![]()
图9:陶伊石球,约公元前2500年
三件未完成石球表明:工匠会先将石材打磨成球体,再开始雕刻凸起。这些石球的用途至今未明;早期推测包括用作投掷武器、抛掷时迎风发哨的响器、某种游戏的用球,或象征王权的宝球。
![]()
对致力于复原"失落知识"的建筑师基思·克里奇洛而言,这些石球展现了新石器时代人类为器物本身而欢欣的纯粹喜悦。他发现石球中包含全部五种正多面体(柏拉图立体),以及四种所谓半正多面体。克里奇洛(1979)指出,这些实例表明在古希腊人系统梳理正多面体之前千余年,人类已形成具有完整体系的几何对称认知。
克里奇洛提出,这些石球"以其自身语言作出了清晰简练的陈述,不逊于任何口头或书面形式"(第149页)。但他也不可避免地陷入某种转译石球语言的尝试。颇具反讽意味的是,为抵制从希腊化术语中追寻文化起源的倾向,克里奇洛却以严格欧几里得方式解读其中的数学内涵。若真要对此进行数学阐释,或可采用更普适的框架。例如,或可将其视为球面k-最大点集问题的有趣解——粗略而言,即如何在球面上分布若干点集使其彼此间距最大化的数学问题。
倘若愿意,我们还可对众多器物进行各式数学重释。但正如塔门(2001)所言:
"可以想见,被我们大多数人称为'阐释'的行为,在他人眼中或许正是一种怪异费解的操演——类似我们看待祈雨舞或物理实验室复杂仪式的观感。"(第131-132页)
精琢之物
这些珍藏于博物馆并经数学分析的新石器时代器物,无疑已丧失任何原始的圣像功能。那么我们当下的圣化之物呢?它们自然已迥异于前。但我们特有的客体,我们的圣奉物,仍能以某种方式向我们言说——纵非狄奥多罗所试图描述的方式,亦相去不远。若说上帝未必总在观者眼中,但神秘常在。我们或可在潜意识层面与之互动,宛若人际交感。精神分析师虽有用以解析此类沟通的专业术语(通常被称为共情或直觉),但关键在于:世人皆以不同方式体验此境,纵使未必时常觉察。
洞悉(部分)数学对象所蕴含的知性,是数学家的天命——他们需要持续保持对认知行为本身的觉察。这种经训练形成的自反活动,或许令人愉悦、滋养生命,或许带来痛苦、窒息生机,抑或在两极间往复摆动。我们无需执着于某一端,正如无需在圣像崇拜者与破坏者之间作出抉择:抑或,在将数学对象视为人类构造物与某种先验存在之间强分泾渭。摒弃这些区分吧!关键在于:我们能否让自身经验成为圣像(依该词本义)?
艺术家始终致力于为我们捕捉此境。例如乔治·艾略特在小说《亚当·贝德》中勾勒出人际关系的精微复杂。在几页优美的叙述中,艾略特(1859/1961)铺陈了亚当在花园偶遇海蒂的场景——他误以为自己的情感得到了回应。当时海蒂正在采摘果实,亚当被彼此心照不宣的爱意所淹没。可悲的是他错了:海蒂始终心系他人。尚未察觉真相的亚当,却自以为捕捉到了爱的回响——"一丝微妙的迹象"。艾略特继而用激荡人心的文句,将这初萌爱意的记忆——她称之为"男人余生最难忘怀的刹那"——与消逝的童年追忆相比较。
我们早年的欢愉大多彻底消逝于记忆之外:永远无法忆起儿时偎依母亲怀抱或攀骑父亲肩头的喜悦。这份欢欣无疑已融入我们的天性,如同久远晨光融入杏子温润的甘醇,但它已从想象中永逝,我们只能笃信童年确曾有过这样的欢愉。(第215页;原文为斜体)
正是艾略特的文学成就,让我们得以凭借想象重新体验这份"融入天性"的欢愉。但该如何理解"融入"?作家似乎突然抛却描绘花园的具象触觉意象,转而使用一个描述过程的词语——这个词语或许能被具有数学敏感度的人以不同(也许是拓扑学的)术语理解。若真如此,这或是一种升华式的数学化,为"杏子融就的甘醇"这一意象赋予新的馈赠。
![]()
当然,有些意象所彰显的神秘性或许难以轻易剖析:例如摄影术先驱威廉·亨利·福克斯·塔尔博特拍摄的那张诡异而自省的影像——一把扫帚静立于敞开门口。[22]
震颤的弦
艺术家马克斯·比尔(1949/1993)在枚举诸如笼罩所有数学问题的神秘性、空间的不可言喻、无穷的远与近、构成连贯统一体的异质多元等概念时,并未将扫帚这类日常物件纳入其中。这些形而上学的扫帚:
却可能承载着至高无上的意义。尽管这些意象或许看似艺术家内心幻视的蜃景,但它们实则是潜隐力量的投射;这些力量或活跃或沉寂,或局部显现、尚未成型、仍待探索,却构成了所有人造体系与可认知自然法则的根基。
如何感知此类力量,自然是心理治疗师训练的内容。但艺术家与数学家往往自我锤炼。人们在各自学科中或许关注不同客体,但其关注方式常惊人地相似。德尼·狄德罗(1769/1966)早有过精彩论述:在一场虚构对话中,他与同时代的达朗贝尔交谈。后者提出,若要使客体产生意义,必须保持对其审视,同时由智力确认或否定客体的某些特质。狄德罗以角色身份赞同,继而描述这一过程。
此即我所思,它常令我比照人体器官纤维与敏感震颤的琴弦。敏感琴弦被拨动后,仍将长久震颤鸣响。正是这种振荡——一种必要的共振——使客体持续在场,同时让理解力得以自由审视客体的任一特质。而震颤的琴弦另具特性:能引发它者共振。由此,一个理念唤起第二个,二者共唤第三个,三者同召第四个,依此绵延[...](第156页)
现实中,达朗贝尔能将震颤的弦数学化,而狄德罗则借此对我们或可另用术语描述的过程,作出了绝妙的隐喻阐释。狄德罗诘问:若所述现象能在共振琴弦间观察到,缘何不能在"鲜活而联结的质点、连续而敏感的纤维"间发生?
人与人之间?抑或人与客体之间?是感知性客体?是人工造物还是数学对象?我始终试图暗示而非明言的核心在于:无论何种情形,关键皆在于震颤能否触及神秘,以及我们能否参与——甚或敬畏——这份神秘。
精神分析师有其描述此类过程的方式。例如,我们或将自身的某些部分投射至客体——无论是人、无生命之物还是数学图示——而后客体便以可感知(或积极或消极)的方式向我们回响。论及马塞尔·杜尚1920年代展出陶瓷小便器(早期"概念"艺术范例)时,阿德里安·斯托克斯(1965: 13)指出:"在此情境下,我们观者承担了全部艺术创作——除了艺术家将客体隔离出来吸引我们注意"。而布莱克(1810/1967)一如既往地以撼人心魄的方式言说:
若观者能乘沉思之火的战车驶入想象之境,亲近这些意象,若能踏入诺亚的虹霓或他的怀抱,抑或与这些奇迹意象之一结为友伴[...]他便将从墓穴复活,在空中与主相会,终得至福。(第162页)
作为读者练习,此处呈现两个数学"奇迹意象"——其一或颇为熟悉,另一或许陌生。[23]
![]()
![]()
物之玄秘
当莎士比亚笔下的李尔终开始理解自身遭遇及施加于他人的苦难时,他短暂怀揣着与重聚女儿共度田园诗般囚居晚年的希冀。他憧憬二人如笼中鸟般歌唱,说道"我们将祈祷、歌唱、讲述古老传说、笑看金翅蝶影[...]并将承担物之玄秘,宛若上帝的密探"。
"何种事物?"克里斯托弗·博拉斯(1999: 195)诘问。[24]
那些作为效应存在的事物:栖居于培育它们的主体,藏身于被认为容纳它们的客体,显形于那些并非认知其本质、而是熟稔其'非存在'律动的接收者。非关生命主题,非关小说情节,非关分析者的急迫陈述——而是生命形式本身。
"何种玄秘?"他继续追问。
一个无解却统摄全局的诘问。究竟是何等智性穿梭于心智间:创造它的客体,塑就它的内景,自我言说,凝聚情绪,催生他者降临的思绪,直至……直至……直至?
![]()
图10:保罗·塞尚,《苹果与橙子》,约1899年,巴黎奥赛博物馆
最后照例放些跟张大少有关的图书链接。
青山不改,绿水长流,在下告退。
转发随意,转载请联系张大少本尊,联系方式请见公众号底部菜单栏。
扫一扫,关注微信公众号“宇宙文明带路党”
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.