城市化已然成为一股不可抗拒的浪潮,席卷着全球。World Urbanization Prospects 一书指出 1950 年全球城市化率仅为 30%,2014 年增长为 1950 年的 1.8倍,达到 54%,到 2050 年城市人口占比将翻一番,达到 66%。快速城市化过程导致生态环境问题日益突出,Cities and Climate Change 一书指出城市能源消耗占到全球能源消耗的 67%,排放的温室气体占比为 70%,而自然资源消耗占比高达75%。《全球大城市监测报告》指出中国城市化进程前所未有,已处于全球增长前沿。中国作为城市研究的重要阵地和实验场,其城市规模、拓展范围的持续演变必将深刻影响全球社会、经济、生态和环境等关键因素。为了预防与遏制城市快速发展的不利影响,指明未来城市发展方向,城市代谢作为一种新的研究方式、研究视角成为国内外城市研究的热点。
城市代谢的研究方式是将城市类比为一个巨型有机体、生命体,分析其新陈代谢过程。类比人体摄取营养物质、排泄各种废弃物的过程,城市运行也需要输入物质和能量,排放各种形态的废弃物;人体经新陈代谢后会不断长大(骨骼和肌肉),城市也会不断生长(基础设施和建筑物)。但人体过瘦或过胖均会产生相应的代谢病,导致活力丧失,人体过瘦相当于城市物质和能量供给不足,或消耗量大但转化动力不足(效率低),就会营养不良,城市瘦骨嶙峋(基础设施不完备、贫穷等);人体过胖相当于大量城市物质和能量消耗累积为在用存量,进而引起更大的物质、能量消耗,产生严重的生态环境问题,就会营养过剩,城市臃肿不堪(资源耗竭、污染严重、交通拥挤等)。城市代谢研究可为城市可持续发展目标的实现提供重要的测度指标、规划设计方案,这一重要工具和手段的有效性已在学术界、管理部门达成共识。自 1965 年 Wolman 的开创性研究以来,城市代谢领域在技术方法、模型构建、实践应用等方面取得了一定的进展,也为中国 2019 年开展的“无废城市”建设工作提供了重要的理论支持。
本书全面论述了城市代谢理念、技术框架、研究内容、研究方法及实践应用等方面的内容,是作者 15 年城市代谢研究工作及成果的总结。
ISBN:978-7-03-072099-3
内容简介
随着城市化进程的加快和人民生活水平的提高,资源消耗和污染排放不断加剧,而由于社会经济发展水平的认识限制,还未构建起完备的资源减量、废弃物循环的技术体系,引发严重的城市生态环境问题,引起了学术界、政府部门和城市管理者的广泛关注。本书作为城市代谢领域的专著,在反映国内外相关领域研究进展和学术思想的基础上,深入探索和创新,突出城市代谢理念、理论与方法的先进性,强调其在城市规划、设计与管理方面的实用性,并突出城市研究的系统性和应用性。全书共 11 章,分别论述了城市代谢内涵、研究进展、研究框架、核算评价、模型模拟、优化调控、多要素应用案例等内容。
本书可供高等院校和科研院所城市生态、城市规划和环境生态等领域的教学和研究人员阅读,可作为环境、地理、生态、城市规划、城市管理等相关专业研究生和本科生的教学参考书,也可为城市规划者、管理者、生态保护者提供参考。
Contens
目录速览
Contents
Preface
Part A Theoretical Framework
Chapter 1 Connotations of Urban Metabolism 3
1.1 The concept of an urban organism and ecosystem 3
1.2 Multi-level similarity of urban systems to organisms 6
1.2.1 Similarity of the structural hierarchy 6
1.2.2 Similarity of the functional mechanisms 7
1.3 Evolution of the concept of an urbanmetabolism 9
1.4 Urban metabolic processes 12
1.4.1 Metabolic phases 12
1.4.2 External and internal flows 13
1.4.3 Anabolism, catabolism, and regulatory metabolism 14
1.4.4 Metabolic linkages 14
1.4.5 Metabolic chains 16
1.4.6 Classification of the metabolic actors 18
1.4.7 Characteristics of the metabolic actors 19
1.5 Urban metabolic characteristics 23
1.5.1 Growth and development 24
1.5.2 Openness and dependency 26
1.5.3 Stability and robustness 27 References 29
Chapter 2 Progress in Urban Metabolism Research 31
2.1 The significance of urban metabolism research 31
2.1.1 Feasibility 31
2.1.2 Necessity 32
2.1.3 Urgency 33
2.2 CiteSpace knowledge mapping analysis 37
2.2.1 The number of publications 38
2.2.2 Collaborative network analysis 38
2.2.3 Discipline co-occurrence analysis 41
2.3 Research frontier analysis 44
2.3.1 Timeline analysis 44
2.3.2 Cluster analysis 49
2.3.3 Burst analysis 51
2.3.4 Cluster analysis for co-cited references 52
2.3.5 Analysis of high-frequency co-cited literature 55
2.4 Development stage of urban metabolism research 57
2.4.1 Early period (1965-1980) 57
2.4.2 Slow growth period (1981-2000) 59
2.4.3 Rising period (2001-present) 61
2.5 Historical evolution of urban metabolism research 64
2.5.1 Accounting evaluation methods 64
2.5.2 Model simulation 65
2.5.3 Application research 67
2.5.4 Scales and boundaries 69 References 72
Chapter 3 Theory, Paradigms, and Technical Methods for Urban Metabolism 83
3.1 Composite ecosystem theory 83
3.1.1 Natural subsystem 83
3.1.2 Socioeconomic subsystem 85
3.1.3 Structural features 86
3.1.4 Balance between pressure and support 89
3.2 Thermodynamics theory 90
3.2.1 Vitality metabolism 90
3.2.2 Entropy 92
3.3 System ecology theory 94
3.3.1 Integration of holism and reductionism 94
3.3.2 Urban metabolism research based on systems ecology 95
3.4 Research paradigms 97
3.4.1 The relationship among the three research paradigms 98
3.4.2 Natural metabolism 99
3.4.3 Socioeconomic metabolism 99
3.4.4 Integrated (hybrid) natural and socioeconomic metabolism paradigm 100
3.5 Technical framework 102 References 105
Part B Methods
Chapter 4 Accounting Evaluation of Urban Metabolism 111
4.1 Material flow analysis 111
4.1.1 Flow accounting 112
4.1.2 Stock accounting 121
4.2 Substance flow analysis 124
4.2.1 Carbon accounting 124
4.2.2 Nitrogen accounting 129
4.3 Emergy analysis 133
4.4 Measuring the system’s evolution 138
4.4.1 Measurement index system 138
4.4.2 Information entropy index 140
4.4.3 Harmonious development model 142
4.5 Measuring interactions between the natural and socioeconomic systems 144
4.5.1 Measurement index system 144
4.5.2 Sustainability index 145 References 147
Chapter 5 Network Models to Simulate Urban Metabolism 150
5.1 Network models based on physical metabolism 150
5.1.1 Urban water metabolic network models 150
5.1.2 Urban energy metabolic network models 154
5.1.3 Urban carbon and nitrogen metabolic network models 158
5.1.4 Urban material metabolic network models 163
5.1.5 Urban emergy metabolic network models 169
5.2 Spatially explicit models based on land use and cover change 171
5.2.1 Principles for developingspatiallyexplicit carbon metabolic network models 171
5.2.2 Spatially explicit models of an urban carbon metabolic network 175
5.3 Network models based on input-output tables 178
5.3.1 Development of an input-output table 179
5.3.2 Compilation of the input-output table based on the material consumption intensity coefficient 183
5.3.3 Analogy between trophic levels and metabolic network models 184
5.3.4 Compilation of the input-output table based on the energy consumption intensity coefficient 188
5.4 Simulation of network characteristics 193
5.4.1 Network structure simulation 193
5.4.2 Network function simulation 197
5.4.3 Network path simulation 205 References 209
Chapter 6 Regulation and Optimization of an Urban Metabolism 213
6.1 Factor decomposition models 213
6.1.1 Decomposition model for an urban carbon metabolism 214
6.1.2 Refine the decomposition model for the social and economic factors 216
6.1.3 Classification model forenergy-related carbon emission 219
6.1.4 Decomposition model for an urban nitrogen metabolism 220
6.1.5 Decomposition model of material metabolism 222
6.2 Decoupling state criteria 224
6.3 Center of gravity model 228
6.4 System dynamics simulation model 230
6.4.1 Optimization model for a city’s industrial structure 231
6.4.2 Optimization model for human carrying capacity 234 References 237
Part C Applications
Chapter 7 Analysis of Material Metabolic Processes: Urban Weight 241
7.1 Urban weight analysis from a flow perspective 241
7.1.1 Analysis of urban flows’ weight and its structure 244
7.1.2 Contributions of the metabolic components 247
7.1.3 Identification of the driving forces behind the urban weight 250
7.1.4 The significance of measuring urbanweight from the flowperspective 253
7.1.5 Comparisons with other cities 253
7.1.6 Diagnosis of and solutions to material metabolism problems in Beijing 255
7.2 Urban weight analysis for Beijing from the perspective of stocks 256
7.2.1 Analysis of urban stocks’ weight and its structure 257
7.2.2 Structural analysis of the stock subtypes 260
7.2.3 Changes in the relationship between the weights and socioeconomic factors 269
7.2.4 The significance of measuring urbanweight from the stock perspective 272
7.2.5 Comparison with other research 273
7.2.6 Diagnosis of metabolic disorders in Beijing from a stock perspective and recommended solutions 276
7.3 Identification of key entities in Beijing’s material metabolism 278
7.3.1 Relevance analysis 280
7.3.2 Analysis of the ecological relationships 284
7.3.3 Identifying the key actors 285
7.3.4 Conclusions and prospects 286 References 287
Chapter 8 Analysis of a City’s Energy Metabolism 291
8.1 Analysis of energy metabolic processes 291
8.1.1 Analysis of a metabolic network 294
8.1.2 Shifts of the centers of gravity for energy production and consumption 305
8.1.3 Advantages of models with different precision 310
8.1.4 Diagnosis of urban energy metabolism problems and potential solutions 312
8.1.5 Spatial patterns of supply and demand forthe energytypes 313
8.1.6 Conclusions related to the centers of gravity for energy supply and demand 314
8.2 Analysis of the characteristics of urban emergy metabolic networks 315
8.2.1 Metabolic characteristics 318
8.2.2 Metabolic paths and relationships 322
8.2.3 Management suggestions based on Beijing’s emergy accounting evaluation 327
8.2.4 Suggestions for improving the urban energy metabolic network 328
8.3 Analysis of the embodied energy metabolism network of the Beijing-Tianjin-Hebei region 328
8.3.1 Analysis of the embodied energy metabolism of the nodes 331
8.3.2 Analysis of the embodied energy metabolism of paths 335
8.3.3 Relationships analysis 339
8.3.4 Research innovations and comparison with previous research 344
8.3.5 Policy recommendations 345
8.3.6 Importance of multi-scale comparative analysis 346 References 347
Chapter 9 Analysis of Carbon Metabolic Processes 350
9.1 Identification of the key metabolic actors in the urban carbon system 350
9.1.1 Changes of the carbon metabolism and its structure 353
9.1.2 Identification of the key actors based on the carbon imbalance index 354
9.1.3 Identification of key actors based on the carbon external dependence index 357
9.1.4 Comparison with previous research 360
9.1.5 Explanations of the research results 361
9.2 Spatial analysis for the carbon metabolism of an urban agglomeration 365
9.2.1 Carbon metabolism accounting and its spatial distribution 368
9.2.2 Impact of land use changes on the carbon emission and absorption 374
9.2.3 Comparison of carbon spatial variation with other studies 379
9.2.4 Comparison of the impact of land use change on carbon throughput with previous research 380
9.3 Spatial network analysis of Beijing’s carbon metabolism 381
9.3.1 General spatial characteristics 384
9.3.2 Ecological relationships and their spatial patterns 385
9.3.3 Comparison with previous research on spatial distributions 388
9.3.4 Comparison with previous research on ecological relationships 389
9.4 Path analysis of the carbon involved in trade between the United States and China 390
9.4.1 CO2 transfers in imports and exports 392
9.4.2 Import links among sectors in the United States and China 395
9.4.3 Export links among sectors in the United States and China 398
9.4.4 Adjustment of the carbon mitigation targets to account for CO2 transfers in trade 402
9.4.5 The importance of the research perspective 404
9.4.6 Comparison with previous research 405 References 407
Chapter 10 Analysis of the Urban Nitrogen Metabolism 412
10.1 Accounting for nitrogen metabolism and its key influencing factors in Beijing 412
10.1.1 Analysis of the total input of reactive nitrogen 413
10.1.2 Analysis of the structural characteristicsof the reactive nitrogen inputs 416
10.1.3 Analysis of anthropogenic nitrogen consumption 421
10.1.4 Contributions of influencing factors 425
10.1.5 Comparison with previous research on the total characteristics of urban nitrogen metabolism 430
10.1.6 Comparison with previous research on the structural characteristics of urban nitrogen metabolism 432
10.1.7 Comparison with previous nitrogen metabolism research 435
10.2 Analysis of Beijing’s nitrogen metabolism network 436
10.2.1 Direct-flow analysis of nitrogen metabolism 437
10.2.2 Integrated flows of nitrogen 440
10.2.3 The relationships between metabolic actors 443
10.2.4 The utility of the metabolic sectors 446
10.2.5 The structure of the flow hierarchy 450
10.2.6 The structure of the utility hierarchy 452
10.2.7 Significance of the network analysis 455
10.2.8 Comparison with previous research on the ecological components and their relationships 456
10.2.9 Comparison with previous research on metabolic utility and the hierarchical structure 459 References 462
Chapter 11 Analysis of Metabolic Processes in Eco-Industrial Parks 465
11.1 Symbiotic metabolic processes in an eco-industrial park 465
11.1.1 A symbiotic metabolic network model 468
11.1.2 Topology of the symbiotic metabolic networks 471
11.1.3 Core-periphery structure analysis 472
11.1.4 Degree of connectedness 476
11.1.5 Importance of research modalities 480
11.1.6 Findings and recommendations 481
11.2 Analysis of the sulfur metabolism in an eco-industrial park 482
11.2.1 Construction of the network model for the park’s sulfur metabolism 485
11.2.2 Structure analysis 488
11.2.3 Functional analysis 492
11.2.4 Comparison with previous research 500
11.2.5 Planning for future development 504
References 505
Preface
(本期编辑:王芳)
科学出版社视频号
硬核有料 视听科学
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.